Hydrogen evolution reaction (HER) by splitting water is a key technology toward a clean energy society, where Pt-based catalysts were long known to have the highest activity under acidic electrochemical conditions but suffer from high cost and poor stability. Here, we overview the current status of Pt-catalyzed HER from a theoretical perspective, focusing on the methodology development of electrochemistry simulation, catalytic mechanism, and catalyst stability. Recent developments in theoretical methods for studying electrochemistry are introduced, elaborating on how they describe solid–liquid interface reactions under electrochemical potentials. The HER mechanism, the reaction kinetics, and the reaction sites on Pt are then summarized, which provides an atomic-level picture of Pt catalyst surface dynamics under reaction conditions. Finally, state-of-the-art experimental solutions to improve catalyst stability are also introduced, which illustrates the significance of fundamental understandings in the new catalyst design.

1.
Z. W.
Seh
,
J.
Kibsgaard
,
C. F.
Dickens
,
I.
Chorkendorff
,
J. K.
Norskov
, and
T. F.
Jaramillo
,
Science
355
(
6321
),
eaad4998
(
2017
).
2.
C. G.
Morales-Guio
,
L.-A.
Stern
, and
X.
Hu
,
Chem. Soc. Rev.
43
(
18
),
6555
(
2014
).
3.
J.
Hou
,
Y.
Wu
,
B.
Zhang
,
S.
Cao
,
Z.
Li
, and
L.
Sun
,
Adv. Funct. Mater.
29
(
20
),
1808367
(
2019
).
4.
R.
de Levie
,
J. Electroanal. Chem.
476
,
92
(
1999
).
5.
Q.
Gao
,
W.
Zhang
,
Z.
Shi
,
L.
Yang
, and
Y.
Tang
,
Adv. Mater.
31
(
2
),
1802880
(
2019
).
6.
X.
Li
,
X.
Hao
,
A.
Abudula
, and
G.
Guan
,
J. Mater. Chem. A
4
(
31
),
11973
(
2016
).
7.
Q.
Li
,
Y.
Ouyang
,
S.
Lu
,
X.
Bai
,
Y.
Zhang
,
L.
Shi
,
C.
Ling
, and
J.
Wang
,
Chem. Commun.
56
(
69
),
9937
(
2020
).
8.
J. K.
Nørskov
,
T.
Bligaard
,
A.
Logadottir
,
J. R.
Kitchin
,
J. G.
Chen
,
S.
Pandelov
, and
U.
Stimming
,
J. Electrochem. Soc.
152
(
3
),
J23
(
2005
).
9.
N. M.
Markovic
,
B. N.
Grgur
, and
P. N.
Ross
,
J. Phys. Chem. B
101
,
5405
(
1997
).
10.
S.
Chen
and
A.
Kucernak
,
J. Phys. Chem. B
108
(
37
),
13984
(
2004
).
11.
K. C.
Neyerlin
,
W.
Gu
,
J.
Jorne
, and
H. A.
Gasteiger
,
J. Electrochem. Soc.
154
(
7
),
B631
(
2007
).
12.
J.
Wang
,
F.
Xu
,
H.
Jin
,
Y.
Chen
, and
Y.
Wang
,
Adv. Mater.
29
(
14
),
1605838
(
2017
).
13.
J.
Zhu
,
L.
Hu
,
P.
Zhao
,
L. Y. S.
Lee
, and
K.-Y.
Wong
,
Chem. Rev.
120
(
2
),
851
(
2020
).
14.
H.
Jin
,
C.
Guo
,
X.
Liu
,
J.
Liu
,
A.
Vasileff
,
Y.
Jiao
,
Y.
Zheng
, and
S.-Z.
Qiao
,
Chem. Rev.
118
(
13
),
6337
(
2018
).
15.
N.
Cheng
,
S.
Stambula
,
D.
Wang
,
M. N.
Banis
,
J.
Liu
,
A.
Riese
,
B.
Xiao
,
R.
Li
,
T.-K.
Sham
,
L.-M.
Liu
,
G. A.
Botton
, and
X.
Sun
,
Nat. Commun.
7
,
13638
(
2016
).
16.
P.
Paciok
,
M.
Schalenbach
,
M.
Carmo
, and
D.
Stolten
,
J. Power Sources
365
,
53
(
2017
).
17.
L.
Tang
,
X.
Li
,
R. C.
Cammarata
,
C.
Friesen
, and
K.
Sieradzki
,
J. Am. Chem. Soc.
132
(
33
),
11722
(
2010
).
18.
A. V.
Virkar
and
Y.
Zhou
,
J. Electrochem. Soc.
154
(
6
),
B540
(
2007
).
19.
H.
Yu
,
L.
Bonville
,
J.
Jankovic
, and
R.
Maric
,
Appl. Catal. B: Environ.
260
,
118194
(
2020
).
20.
R. G.
Compton
and
C. E.
Banks
,
Understanding Voltammetry
(
World Scientific Publishing Europe Ltd.
,
2018
).
21.
Y.-H.
Fang
,
G.-F.
Wei
, and
Z.-P.
Liu
,
J. Phys. Chem. C
117
(
15
),
7669
(
2013
).
22.
Z.-D.
He
,
J.
Wei
,
Y.-X.
Chen
,
E.
Santos
, and
W.
Schmickler
,
Electrochim. Acta
255
,
391
(
2017
).
23.
I.
Ledezma-Yanez
,
W. D. Z.
Wallace
,
P.
Sebastián-Pascual
,
V.
Climent
,
J. M.
Feliu
, and
M. T. M.
Koper
,
Nat. Energy
2
(
4
),
17031
(
2017
).
24.
H.
Ooka
,
M. E.
Wintzer
, and
R.
Nakamura
,
ACS Catal.
11
(
10
),
6298
(
2021
).
25.
Y.-H.
Fang
,
D.-d.
Song
,
H.-x.
Li
, and
Z.-P.
Liu
,
J. Phys. Chem. C
125
(
20
),
10955
(
2021
).
26.
G.-F.
Wei
and
Z.-P.
Liu
,
Chem. Sci.
6
(
2
),
1485
(
2015
).
27.
Y.
Zheng
,
Y.
Jiao
,
A.
Vasileff
, and
S. Z.
Qiao
,
Angew. Chem., Int. Ed. Engl.
57
(
26
),
7568
(
2018
).
28.
M.
Van den Bossche
,
E.
Skúlason
,
C.
Rose-Petruck
, and
H.
Jónsson
,
J. Phys. Chem. C
123
(
7
),
4116
(
2019
).
29.
M. C.
Payne
,
M. P.
Teter
,
D. C.
Allan
,
T. A.
Arias
, and
J. D.
Joannopoulos
,
Rev. Mod. Phys.
64
(
4
),
1045
(
1992
).
30.
Y.-F.
Shi
,
P.-L.
Kang
,
C.
Shang
, and
Z.-P.
Liu
,
J. Am. Chem. Soc.
144
(
29
),
13401
(
2022
).
31.
A.
Verdaguer
,
G. M.
Sacha
,
H.
Bluhm
, and
M.
Salmeron
,
Chem. Rev.
106
(
4
),
1478
(
2006
).
32.
H.
Ogasawara
,
B.
Brena
,
D.
Nordlund
,
M.
Nyberg
,
A.
Pelmenschikov
,
L. G. M.
Pettersson
, and
A.
Nilsson
,
Phys. Rev. Lett.
89
(
27
),
276102
(
2002
).
33.
M.
Nakamura
,
Y.
Shingaya
, and
M.
Ito
,
Chem. Phys. Lett.
309
,
123
(
1999
).
34.
A.
Michaelides
,
Appl. Phys. A
85
(
4
),
415
(
2006
).
35.
K.
Tonigold
and
A.
Gross
,
J. Comput. Chem.
33
(
6
),
695
(
2012
).
36.
Y.-H.
Fang
,
G.-F.
Wei
, and
Z.-P.
Liu
,
Catal. Today
202
,
98
(
2013
).
37.
E.
Skúlason
,
V.
Tripkovic
,
M. E.
Björketun
,
S.
Gudmundsdóttir
,
G.
Karlberg
,
J.
Rossmeisl
,
T.
Bligaard
,
H.
Jónsson
, and
J. K.
Nørskov
,
J. Phys. Chem. C
114
(
50
),
22374
(
2010
).
38.
S.
Schnur
and
A.
Gross
,
New J. Phys.
11
,
125003
(
2009
).
39.
T.
Roman
and
A.
Gross
,
Catal. Today
202
,
183
(
2013
).
40.
J. B.
Le
,
Q. Y.
Fan
,
J. Q.
Li
, and
J.
Cheng
,
Sci. Adv.
6
(
41
),
eabb1219
(
2020
).
41.
J. B.
Le
,
M.
Iannuzzi
,
A.
Cuesta
, and
J.
Cheng
,
Phys. Rev. Lett.
119
(
1
),
016801
(
2017
).
42.
P.
Li
,
Y.
Jiang
,
Y.
Hu
,
Y.
Men
,
Y.
Liu
,
W.
Cai
, and
S.
Chen
,
Nat. Catal.
5
(
10
),
900
(
2022
).
43.
R.
Jinnouchi
and
A. B.
Anderson
,
Phys. Rev. B
77
(
24
),
245417
(
2008
).
44.
P.
Lindgren
,
G.
Kastlunger
, and
A. A.
Peterson
,
ACS Catal.
10
(
1
),
121
(
2020
).
45.
K.
Mathew
,
R.
Sundararaman
,
K.
Letchworth-Weaver
,
T. A.
Arias
, and
R. G.
Hennig
,
J. Chem. Phys.
140
(
8
),
084106
(
2014
).
46.
J.-L.
Fattebert
and
F.
Gygi
,
J. Comput. Chem.
23
(
6
),
662
(
2002
).
47.
E.
Skúlason
,
G. S.
Karlberg
,
J.
Rossmeisl
,
T.
Bligaard
,
J.
Greeley
,
H.
Jónsson
, and
J. K.
Nørskov
,
Phys. Chem. Chem. Phys.
9
(
25
),
3241
(
2007
).
48.
Y.-H.
Fang
and
Z.-P.
Liu
,
J. Am. Chem. Soc.
132
(
51
),
18214
(
2010
).
49.
Y.-H.
Fang
and
Z.-P.
Liu
,
ACS Catal.
4
(
12
),
4364
(
2014
).
50.
S.
Trasatti
,
Pure Appl. Chem.
58
(
7
),
955
(
1986
).
51.
M. T.
Tang
,
X.
Liu
,
Y.
Ji
,
J. K.
Norskov
, and
K.
Chan
,
J. Phys. Chem. C
124
(
51
),
28083
(
2020
).
52.
A.
Gross
and
S.
Sakong
,
Chem. Rev.
122
,
10746
(
2022
).
53.
P. S.
Rice
,
Z.-P.
Liu
, and
P.
Hu
,
J. Phys. Chem. Lett.
12
(
43
),
10637
(
2021
).
54.
L.-H.
Luo
,
S.-D.
Huang
,
C.
Shang
, and
Z.-P.
Liu
,
ACS Catal.
12
(
10
),
6265
(
2022
).
55.
J.-S.
Filhol
and
M.
Neurock
,
Angew. Chem., Int. Ed. Engl.
45
(
3
),
402
(
2006
).
56.
C. D.
Taylor
,
S. A.
Wasileski
,
J.-S.
Filhol
, and
M.
Neurock
,
Phys. Rev. B
73
(
16
),
165402
(
2006
).
57.
A.
Gross
and
S.
Schnur
, in
Catalysis in Electrochemistry
, edited by
E.
Santos
and
S.
Wolfgang
(
John Wiley & Sons, Inc.
,
2011
), pp.
165
192
.
58.
R.
Kronberg
and
K.
Laasonen
,
ACS Catal.
11
(
13
),
8062
(
2021
).
59.
H. P.
Komsa
and
A.
Pasquarello
,
Phys. Rev. Lett.
110
(
9
),
095505
(
2013
).
60.
G.
Kastlunger
,
P.
Lindgren
, and
A. A.
Peterson
,
J. Phys. Chem. C
122
(
24
),
12771
(
2018
).
61.
J.
Rossmeisl
,
E.
Skúlason
,
M. E.
Björketun
,
V.
Tripkovic
, and
J. K.
Nørskov
,
Chem. Phys. Lett.
466
,
68
(
2008
).
62.
K.
Chan
and
J. K.
Nørskov
,
J. Phys. Chem. Lett.
6
(
14
),
2663
(
2015
).
63.
K.
Chan
and
J. K.
Nørskov
,
J. Phys. Chem. Lett.
7
(
9
),
1686
(
2016
).
64.
S.
Vijay
,
G.
Kastlunger
,
J. A.
Gauthier
,
A.
Patel
, and
K.
Chan
,
J. Phys. Chem. Lett.
13
(
25
),
5719
(
2022
).
65.
R. F. W.
Bader
,
Chem. Rev.
91
(
5
),
893
(
1991
).
66.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
,
Comput. Mater. Sci.
36
(
3
),
354
(
2006
).
67.
Y.-H.
Fang
,
G.-F.
Wei
, and
Z.-P.
Liu
,
J. Phys. Chem. C
118
(
7
),
3629
(
2014
).
68.
A. M.
Patel
,
S.
Vijay
,
G.
Kastlunger
,
J. K.
Nørskov
, and
K.
Chan
,
J. Phys. Chem. Lett.
12
(
21
),
5193
(
2021
).
69.
M. M.
Melander
,
M. J.
Kuisma
,
T. E. K.
Christensen
, and
K.
Honkala
,
J. Chem. Phys.
150
(
4
),
041706
(
2019
).
70.
N.
Bonnet
,
T.
Morishita
,
O.
Sugino
, and
M.
Otani
,
Phys. Rev. Lett.
109
(
26
),
266101
(
2012
).
71.
K.
Seto
,
A.
Iannelli
,
B.
Love
, and
J.
Lipkowski
,
J. Electroanal. Chem.
226
,
351
(
1987
).
72.
S.
Schuldiner
,
M.
Rosen
, and
D. R.
Flinn
,
J. Electrochem. Soc.
117
,
1251
(
1970
).
73.
R.
Gómez
,
A.
Fernández-Vega
,
J. M.
Feliu
, and
A.
Aldaz
,
J. Phys. Chem.
97
,
4769
(
1993
).
74.
N. M.
Markovic
,
S. T.
Sarraf
,
H. A.
Gasteiger
, and
P. N.
Ross
,
J. Chem. Soc., Faraday Trans.
92
,
3719
(
1996
).
75.
T. J.
Schmidt
,
P. N.
Ross
, and
N. M.
Markovic
,
J. Electroanal. Chem.
524–525
,
252
(
2002
).
76.
B. E.
Conway
,
J.
Barber
, and
S.
Morin
,
Electrochim. Acta
44
,
1109
(
1998
).
77.
J. H.
Barber
and
B. E.
Conway
,
J. Electroanal. Chem.
461
,
80
(
1999
).
78.
B. E.
Conway
and
B. V.
Tilak
,
Electrochim. Acta
47
,
3571
(
2002
).
79.
N.
Hoshi
,
Y.
Asaumi
,
M.
Nakamura
,
K.
Mikita
, and
R.
Kajiwara
,
J. Phys. Chem. C
113
(
39
),
16843
(
2009
).
80.
R.
Kajiwara
,
Y.
Asaumi
,
M.
Nakamura
, and
N.
Hoshi
,
J. Electroanal. Chem.
657
,
61
(
2011
).
81.
M.
Nakamura
,
T.
Kobayashi
, and
N.
Hoshi
,
Surf. Sci.
605
,
1462
(
2011
).
82.
J.
Klein
,
A. K.
Engstfeld
,
S.
Brimaud
, and
R. J.
Behm
,
Phys. Chem. Chem. Phys.
22
(
34
),
19059
(
2020
).
83.
M.
Zhou
,
S.
Bao
, and
A. J.
Bard
,
J. Am. Chem. Soc.
141
(
25
),
10117
(
2019
).
84.
R.
Parsons
,
Trans. Faraday Soc.
54
(
7
),
1053
(
1958
).
85.
S.
Trasatti
,
J. Electroanal. Chem.
39
(
1
),
163
(
1972
).
86.
J.
Greeley
,
T. F.
Jaramillo
,
J.
Bonde
,
I.
Chorkendorff
, and
J. K.
Nørskov
,
Nat. Mater.
5
(
11
),
909
(
2006
).
87.
P.
Sabatier
,
Ber. Dtsch. Chem. Ges.
44
,
1984
(
1911
).
88.
D.
Liu
,
X.
Li
,
S.
Chen
,
H.
Yan
,
C.
Wang
,
C.
Wu
,
Y. A.
Haleem
,
S.
Duan
,
J.
Lu
,
B.
Ge
,
P. M.
Ajayan
,
Y.
Luo
,
J.
Jiang
, and
L.
Song
,
Nat. Energy
4
(
6
),
512
(
2019
).
89.
T. L.
Tan
,
L.-L.
Wang
,
J.
Zhang
,
D. D.
Johnson
, and
K.
Bai
,
ACS Catal.
5
(
4
),
2376
(
2015
).
90.
L.
Mei
,
X.
Gao
,
Z.
Gao
,
Q.
Zhang
,
X.
Yu
,
A. L.
Rogach
, and
Z.
Zeng
,
Chem. Commun.
57
(
23
),
2879
(
2021
).
91.
D. V.
Esposito
,
S. T.
Hunt
,
A. L.
Stottlemyer
,
K. D.
Dobson
,
B. E.
McCandless
,
R. W.
Birkmire
, and
J. G.
Chen
,
Angew. Chem., Int. Ed. Engl.
49
(
51
),
9859
(
2010
).
92.
J.
Yu
,
D.
Wei
,
Z.
Zheng
,
W.
Yu
,
H.
Shen
,
Y.
Qu
,
S.
Wen
,
Y.-U.
Kwon
, and
Y.
Zhao
,
J. Colloid Interface Sci.
566
,
505
(
2020
).
93.
Y.
Tan
,
Y.
Wei
,
K.
Liang
,
L.
Wang
, and
S.
Zhang
,
Int. J. Hydrogen Energy
46
(
52
),
26340
(
2021
).
94.
D. V.
Esposito
,
S. T.
Hunt
,
Y. C.
Kimmel
, and
J. G.
Chen
,
J. Am. Chem. Soc.
134
(
6
),
3025
(
2012
).
95.
K.
Nakada
and
I.
Akira
, in
Graphene Simulation
(
InTech
,
2011
), pp.
3
21
.
96.
M.
Matsutsu
,
M. A.
Petersen
, and
E.
van Steen
,
Phys. Chem. Chem. Phys.
18
(
36
),
25693
(
2016
).
97.
G.
Ramos-Sanchez
and
P. B.
Balbuena
,
Phys. Chem. Chem. Phys.
15
(
28
),
11950
(
2013
).
98.
W. B.
Schneider
,
U.
Benedikt
, and
A. A.
Auer
,
ChemPhysChem
14
(
13
),
2984
(
2013
).
99.
L. G.
Verga
,
J.
Aarons
,
M.
Sarwar
,
D.
Thompsett
,
A. E.
Russell
, and
C.-K.
Skylaris
,
Phys. Chem. Chem. Phys.
18
(
48
),
32713
(
2016
).
100.
C.
Poidevin
,
P.
Paciok
,
M.
Heggen
, and
A. A.
Auer
,
J. Chem. Phys.
150
(
4
),
041705
(
2019
).
101.
M.
Tavakkoli
,
N.
Holmberg
,
R.
Kronberg
,
H.
Jiang
,
J.
Sainio
,
E. I.
Kauppinen
,
T.
Kallio
, and
K.
Laasonen
,
ACS Catal.
7
(
5
),
3121
(
2017
).
102.
S.
Ye
,
F.
Luo
,
Q.
Zhang
,
P.
Zhang
,
T.
Xu
,
Q.
Wang
,
D.
He
,
L.
Guo
,
Y.
Zhang
,
C.
He
,
X.
Ouyang
,
M.
Gu
,
J.
Liu
, and
X.
Sun
,
Energy Environ. Sci.
12
(
3
),
1000
(
2019
).
103.
X.-P.
Yin
,
H.-J.
Wang
,
S.-F.
Tang
,
X.-L.
Lu
,
M.
Shu
,
R.
Si
, and
T.-B.
Lu
,
Angew. Chem., Int. Ed.
57
(
30
),
9382
(
2018
).
104.
J.
Zhang
,
Y.
Zhao
,
X.
Guo
,
C.
Chen
,
C.-L.
Dong
,
R.-S.
Liu
,
C.-P.
Han
,
Y.
Li
,
Y.
Gogotsi
, and
G.
Wang
,
Nat. Catal.
1
(
12
),
985
(
2018
).
105.
S.
Wang
,
X.
Gao
,
X.
Hang
,
X.
Zhu
,
H.
Han
,
W.
Liao
, and
W.
Chen
,
J. Am. Chem. Soc.
138
(
50
),
16236
(
2016
).
106.
B.
Hinnemann
,
P. G.
Moses
,
J.
Bonde
,
K. P.
Jørgensen
,
J. H.
Nielsen
,
S.
Horch
,
I.
Chorkendorff
, and
J. K.
Nørskov
,
J. Am. Chem. Soc.
127
,
5308
(
2005
).
107.
T. F.
Jaramillo
,
K. P.
Jørgensen
,
J.
Bonde
,
J. H.
Nielsen
,
S.
Horch
, and
I.
Chorkendorff
,
Science
317
,
100
(
2007
).
108.
J.
Kibsgaard
,
Z.
Chen
,
B. N.
Reinecke
, and
T. F.
Jaramillo
,
Nat. Mater.
11
(
11
),
963
(
2012
).
109.
H.
Li
,
C.
Tsai
,
A. L.
Koh
,
L.
Cai
,
A. W.
Contryman
,
A. H.
Fragapane
,
J.
Zhao
,
H. S.
Han
,
H. C.
Manoharan
,
F.
Abild-Pedersen
,
J. K.
Nørskov
, and
X.
Zheng
,
Nat. Mater.
15
(
3
),
364
(
2016
).
110.
Y.
Yin
,
J.
Han
,
Y.
Zhang
,
X.
Zhang
,
P.
Xu
,
Q.
Yuan
,
L.
Samad
,
X.
Wang
,
Y.
Wang
,
Z.
Zhang
,
P.
Zhang
,
X.
Cao
,
B.
Song
, and
S.
Jin
,
J. Am. Chem. Soc.
138
(
25
),
7965
(
2016
).
111.
M. H.
Miles
and
M. A.
Thomason
,
J. Electrochem. Soc.
123
,
1459
(
1976
).
112.
R.
Subbaraman
,
D.
Tripkovic
,
D.
Strmcnik
,
K.-C.
Chang
,
M.
Uchimura
,
A. P.
Paulikas
,
V.
Stamenkovic
, and
N. M.
Markovic
,
Science
334
,
1256
(
2011
).
113.
M. A.
McArthur
,
L.
Jorge
,
S.
Coulombe
, and
S.
Omanovic
,
J. Power Sources
266
,
365
(
2014
).
114.
Y.-F.
Xu
,
M.-R.
Gao
,
Y.-R.
Zheng
,
J.
Jiang
, and
S.-H.
Yu
,
Angew. Chem., Int. Ed. Engl.
52
(
33
),
8546
(
2013
).
115.
X.
Zou
,
X.
Huang
,
A.
Goswami
,
R.
Silva
,
B. R.
Sathe
,
E.
Mikmeková
, and
T.
Asefa
,
Angew. Chem., Int. Ed. Engl.
126
,
4461
(
2014
).
116.
H.
Fei
,
J.
Dong
,
M. J.
Arellano-Jiménez
,
G.
Ye
,
N.
Dong Kim
,
E. L. G.
Samuel
,
Z.
Peng
,
Z.
Zhu
,
F.
Qin
,
J.
Bao
,
M. J.
Yacaman
,
P. M.
Ajayan
,
D.
Chen
, and
J. M.
Tour
,
Nat. Commun.
6
,
8668
(
2015
).
117.
X.
Wen
,
X.
Yang
,
M.
Li
,
L.
Bai
, and
J.
Guan
,
Electrochim. Acta
296
,
830
(
2019
).
You do not currently have access to this content.