The omnipresence and diversity of allosteric regulation in proteins and protein associations complemented by the potential for the design of allosterically acting biologics and drugs call for the development of a new generation of computational models for the analysis of allostery and rational engineering/design of desired signaling and effector molecules determining it. One of the most important challenges is the consideration of the role of amino acid sequence in forming the protein’s allosteric communication, including the mode and strength of the allosteric signal that is communicated to the regulated functional site. Here, we present the network-based model with a sequence dependence added in consideration of allosteric communication by combining the structure-based statistical mechanical model of allostery with the Miyazawa-Jernigan residue–residue potential. Applying the model in the analysis of five classical allosteric proteins, we found that it is necessary to consider the following two major determinants: (i) the free energy exerted by the allosteric site on the regulated one and (ii) the background (average) change in dynamics of the overall structure. We show that working together these two components determine the allosteric modulation, calling one to study their dependence on structures, oligomerization states, and sequence divergence in different proteins.

1.
K.
Gunasekaran
,
B.
Ma
, and
R.
Nussinov
, “
Is allostery an intrinsic property of all dynamic proteins?
,”
Proteins
57
,
433
443
(
2004
).
2.
I. N.
Berezovsky
and
R.
Nussinov
, “
Multiscale allostery: Basic mechanisms and versatility in diagnostics and drug design
,”
J. Mol. Biol.
434
,
167751
(
2022
).
3.
E.
Guarnera
and
I. N.
Berezovsky
, “
Allosteric sites: Remote control in regulation of protein activity
,”
Curr. Opin. Struct. Biol.
37
,
1
8
(
2016
).
4.
E.
Guarnera
and
I. N.
Berezovsky
, “
On the perturbation nature of allostery: Sites, mutations, and signal modulation
,”
Curr. Opin. Struct. Biol.
56
,
18
27
(
2019
).
5.
S. J.
Wodak
et al, “
Allostery in its many disguises: From theory to applications
,”
Structure
27
,
566
578
(
2019
).
6.
Z.
Wah Tan
,
W.-V.
Tee
, and
I. N.
Berezovsky
, “
Learning about allosteric drugs and ways to design them
,”
J. Mol. Biol.
434
,
167692
(
2022
).
7.
E.
Guarnera
and
I. N.
Berezovsky
, “
Allosteric drugs and mutations: Chances, challenges, and necessity
,”
Curr. Opin. Struct. Biol.
62
,
149
157
(
2020
).
8.
I. N.
Berezovsky
, “
Thermodynamics of allostery paves a way to allosteric drugs
,”
Biochim. Biophys. Acta
1834
,
830
835
(
2013
).
9.
R.
Nussinov
and
C.-J.
Tsai
, “
Unraveling structural mechanisms of allosteric drug action
,”
Trends Pharmacol. Sci.
35
,
256
264
(
2014
).
10.
R.
Nussinov
and
C.-J.
Tsai
, “
Allostery in disease and in drug discovery
,”
Cell
153
,
293
305
(
2013
).
11.
R.
Nussinov
,
H.
Jang
,
C.-J.
Tsai
, and
F.
Cheng
, “
Review: Precision medicine and driver mutations: Computational methods, functional assays and conformational principles for interpreting cancer drivers
,”
PLoS Comput. Biol.
15
,
e1006658
(
2019
).
12.
W.-V.
Tee
,
E.
Guarnera
, and
I. N.
Berezovsky
, “
On the allosteric effect of nsSNPs and the emerging importance of allosteric polymorphism
,”
J. Mol. Biol.
431
,
3933
3942
(
2019
).
13.
R.
Nussinov
et al, “
Allostery: Allosteric cancer drivers and innovative allosteric drugs
,”
J. Mol. Biol.
434
,
167569
(
2022
).
14.
R.
Nussinov
,
H.
Jang
,
G.
Nir
,
C.-J.
Tsai
, and
F.
Cheng
, “
A new precision medicine initiative at the dawn of exascale computing
,”
Signal Transduction Targeted Ther.
6
,
3
(
2021
).
15.
I. V.
Kurochkin
,
E.
Guarnera
, and
I. N.
Berezovsky
, “
Insulin-degrading enzyme in the fight against Alzheimer’s disease
,”
Trends Pharmacol. Sci.
39
,
49
58
(
2018
).
16.
I. V.
Kurochkin
,
E.
Guarnera
,
J. H.
Wong
,
F.
Eisenhaber
, and
I. N.
Berezovsky
, “
Toward allosterically increased catalytic activity of insulin-degrading enzyme against amyloid peptides
,”
Biochemistry
56
,
228
239
(
2017
).
17.
R.
Nussinov
,
C.-J.
Tsai
, and
H.
Jang
, “
Dynamic protein allosteric regulation and disease
,”
Adv. Exp. Med. Biol.
1163
,
25
43
(
2019
).
18.
S.
Lu
et al, “
Emergence of allosteric drug-resistance mutations: New challenges for allosteric drug discovery
,”
Drug Discovery Today
25
,
177
184
(
2020
).
19.
A.
Goncearenco
et al, “
SPACER: Server for predicting allosteric communication and effects of regulation
,”
Nucleic Acids Res.
41
,
W266
W272
(
2013
).
20.
S.
Mitternacht
and
I. N.
Berezovsky
, “
Coherent conformational degrees of freedom as a structural basis for allosteric communication
,”
PLoS Comput. Biol.
7
,
e1002301
(
2011
).
21.
S.
Mitternacht
and
I. N.
Berezovsky
, “
Binding leverage as a molecular basis for allosteric regulation
,”
PLoS Comput. Biol.
7
,
e1002148
(
2011
).
22.
S.
Mitternacht
and
I. N.
Berezovsky
, “
A geometry-based generic predictor for catalytic and allosteric sites
,”
Protein Eng., Des. Sel.
24
,
405
409
(
2011
).
23.
A.
Triveri
et al, “
Protein allostery and ligand design: Computational design meets experiments to discover novel chemical probes
,”
J. Mol. Biol.
434
,
167468
(
2022
).
24.
Ö.
Tastan Bishop
,
T. M.
Musyoka
, and
V.
Barozi
, “
Allostery and missense mutations as intermittently linked promising aspects of modern computational drug discovery
,”
J. Mol. Biol.
434
,
167610
(
2022
).
25.
P. R.
Arantes
,
A. C.
Patel
, and
G.
Palermo
, “
Emerging methods and applications to decrypt allostery in proteins and nucleic acids
,”
J. Mol. Biol.
434
,
167518
(
2022
).
26.
W.-V.
Tee
,
Z. W.
Tan
,
K.
Lee
,
E.
Guarnera
, and
I. N.
Berezovsky
, “
Exploring the allosteric territory of protein function
,”
J. Phys. Chem. B
125
,
3763
3780
(
2021
).
27.
M. F.
Aziz
,
K.
Caetano-Anollés
, and
G.
Caetano-Anollés
, “
The early history and emergence of molecular functions and modular scale-free network behavior
,”
Sci. Rep.
6
,
25058
(
2016
).
28.
M. L.
Romero Romero
,
A.
Rabin
, and
D. S.
Tawfik
, “
Functional proteins from short peptides: Dayhoff’s hypothesis turns 50
,”
Angew. Chem., Int. Ed. Engl.
55
,
15966
15971
(
2016
).
29.
E. N.
Trifonov
,
A.
Kirzhner
,
V. M.
Kirzhner
, and
I. N.
Berezovsky
, “
Distinct stages of protein evolution as suggested by protein sequence analysis
,”
J. Mol. Evol.
53
,
394
401
(
2001
).
30.
K. B.
Zeldovich
,
I. N.
Berezovsky
, and
E. I.
Shakhnovich
, “
Physical origins of protein superfamilies
,”
J. Mol. Biol.
357
,
1335
1343
(
2006
).
31.
I. N.
Berezovsky
,
A. Y.
Grosberg
, and
E. N.
Trifonov
, “
Closed loops of nearly standard size: Common basic element of protein structure
,”
FEBS Lett.
466
,
283
286
(
2000
).
32.
I. N.
Berezovsky
,
E.
Guarnera
, and
Z.
Zheng
, “
Basic units of protein structure, folding, and function
,”
Prog. Biophys. Mol. Biol.
128
,
85
99
(
2017
).
33.
C.
Chothia
, “
Proteins. One thousand families for the molecular biologist
,”
Nature
357
,
543
544
(
1992
).
34.
C. A.
Orengo
,
D. T.
Jones
, and
J. M.
Thornton
, “
Protein superfamilies and domain superfolds
,”
Nature
372
,
631
634
(
1994
).
35.
A.
Goncearenco
and
I. N.
Berezovsky
, “
Protein function from its emergence to diversity in contemporary proteins
,”
Phys. Biol.
12
,
045002
(
2015
).
36.
W.-V.
Tee
,
Z. W.
Tan
,
E.
Guarnera
, and
I. N.
Berezovsky
, “
Conservation and diversity in allosteric fingerprints of proteins for evolutionary-inspired engineering and design
,”
J. Mol. Biol.
434
,
167577
(
2022
).
37.
E.
Guarnera
and
I. N.
Berezovsky
, “
Structure-based statistical mechanical model accounts for the causality and energetics of allosteric communication
,”
PLoS Comput. Biol.
12
,
e1004678
(
2016
).
38.
E.
Guarnera
and
I. N.
Berezovsky
, “
Toward comprehensive allosteric control over protein activity
,”
Structure
27
,
866
878
(
2019
).
39.
S.
Miyazawa
and
R. L.
Jernigan
, “
Residue-residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading
,”
J. Mol. Biol.
256
,
623
644
(
1996
).
40.
S.
Miyazawa
and
R. L.
Jernigan
, “
Estimation of effective interresidue contact energies from protein crystal structures: Quasi-chemical approximation
,”
Macromolecules
18
,
534
(
1985
).
41.
W.-V.
Tee
,
E.
Guarnera
, and
I. N.
Berezovsky
, “
Disorder driven allosteric control of protein activity
,”
Curr. Res. Struct. Biol.
2
,
191
203
(
2020
).
42.
W.-V.
Tee
,
E.
Guarnera
, and
I. N.
Berezovsky
, “
Reversing allosteric communication: From detecting allosteric sites to inducing and tuning targeted allosteric response
,”
PLoS Comput. Biol.
14
,
e1006228
(
2018
).
43.
Z. W.
Tan
et al, “
Allosteric perspective on the mutability and druggability of the SARS-CoV-2 spike protein
,”
Structure
30
,
590
607
(
2022
).
44.
E.
Guarnera
,
Z. W.
Tan
,
Z.
Zheng
, and
I. N.
Berezovsky
, “
AlloSigMA: Allosteric signaling and mutation analysis server
,”
Bioinformatics
33
,
3996
3998
(
2017
).
45.
Z. W.
Tan
,
E.
Guarnera
,
W.-V.
Tee
, and
I. N.
Berezovsky
, “
AlloSigMA 2: Paving the way to designing allosteric effectors and to exploring allosteric effects of mutations
,”
Nucleic Acids Res.
48
,
W116
w124
(
2020
).
46.
Z. W.
Tan
,
W. V.
Tee
,
E.
Guarnera
,
I. N.
Berezovsky
, “
AlloMAPS 2: Allosteric fingerprints of the AlphaFold and Pfam-trRosetta predicted structures for engineering and design
,”
Nucleic Acids Res.
51
,
D345
(
2023
).
47.
Z. W.
Tan
,
W.-V.
Tee
,
E.
Guarnera
,
L.
Booth
, and
I. N.
Berezovsky
, “
AlloMAPS: Allosteric mutation analysis and polymorphism of signaling database
,”
Nucleic Acids Res.
47
,
D265
D270
(
2019
).
48.
P. R.
Evans
,
G. W.
Farrants
, and
P. J.
Hudson
, “
Phosphofructokinase: Structure and control
,”
Philos. Trans. R. Soc., B
293
,
53
62
(
1981
).
49.
T.
Schirmer
and
P. R.
Evans
, “
Structural basis of the allosteric behaviour of phosphofructokinase
,”
Nature
343
,
140
145
(
1990
).
50.
S.
Arent
,
P.
Harris
,
K. F.
Jensen
, and
S.
Larsen
, “
Allosteric regulation and communication between subunits in uracil phosphoribosyltransferase from Sulfolobus solfataricus
,”
Biochemistry
44
,
883
892
(
2005
).
51.
Z.
Yang
,
C. W.
Lanks
, and
L.
Tong
, “
Molecular mechanism for the regulation of human mitochondrial NAD(P)+-dependent malic enzyme by ATP and fumarate
,”
Structure
10
,
951
960
(
2002
).
52.
D. J.
Schuller
,
G. A.
Grant
, and
L. J.
Banaszak
, “
The allosteric ligand site in the Vmax-type cooperative enzyme phosphoglycerate dehydrogenase
,”
Nat. Struct. Biol.
2
,
69
76
(
1995
).
53.
N.
Popovych
,
S.
Sun
,
R. H.
Ebright
, and
C. G.
Kalodimos
, “
Dynamically driven protein allostery
,”
Nat. Struct. Mol. Biol.
13
,
831
838
(
2006
).

Supplementary Material

You do not currently have access to this content.