Metal oxide nanoparticle (NP) supports of both good conductivity and stability have the potential to enhance both the reaction activity and stability of the loaded electrocatalysts. In this paper, a facile two-step approach to disperse Pt nanoparticles on the surface of an IrO2 NP support (Pt/IrO2) was developed. Physical characterization by x-ray diffraction spectroscopy and transmission/scanning electron microscopy suggests a good dispersion of the Pt NPs. The temperature effect (from 293 to 353 K) of oxygen reduction reaction on Pt/IrO2 was studied by using a rotating ring disk electrode The results show that although the kinetic current density on Pt/IrO2 is close to that on commercial Pt/C at room temperature, the apparent activation energy (Ea,app) in the former case is much lower, suggesting a much higher activity at elevated temperatures. The superiority in Ea,app is attributed to the electron interaction between Pt and the IrO2 support, as supported by the change of surface chemical state given by x-ray photo-electron spectroscopy.

1.
H.
Chen
,
Z.
Song
,
X.
Zhao
,
T.
Zhang
,
P.
Pei
, and
C.
Liang
,
Appl. Energy
224
,
289
(
2018
).
2.
H.
Chen
,
X.
Zhao
,
T.
Zhang
, and
P.
Pei
,
Energy Convers. Manage.
182
,
282
(
2019
).
3.
H.
Cruz-Martínez
,
H.
Rojas-Chávez
,
P. T.
Matadamas-Ortiz
,
J. C.
Ortiz-Herrera
,
E.
López-Chávez
,
O.
Solorza-Feria
, and
D. I.
Medina
,
Mater. Today Phys.
19
,
100406
(
2021
).
4.
S.
Sui
,
X.
Wang
,
X.
Zhou
,
Y.
Su
,
S.
Riffat
, and
C.-j.
Liu
,
J. Mater. Chem. A
5
,
1808
(
2017
).
5.
J. C.
Meier
,
C.
Galeano
,
I.
Katsounaros
,
A. A.
Topalov
,
A.
Kostka
,
F.
Schüth
, and
K. J. J.
Mayrhofer
,
ACS Catal.
2
,
832
(
2012
).
6.
S.
Sharma
and
B. G.
Pollet
,
J. Power Sources
208
,
96
(
2012
).
7.
Z.
Qiao
,
C.
Wang
,
Y.
Zeng
,
J. S.
Spendelow
, and
G.
Wu
,
Small
17
,
2006805
(
2021
).
8.
C.
Goswami
,
K. K.
Hazarika
, and
P.
Bharali
,
Mater. Sci. Energy Technol.
1
,
117
(
2018
).
9.
N. G.
Akalework
,
C.-J.
Pan
,
W.-N.
Su
,
J.
Rick
,
M.-C.
Tsai
,
J.-F.
Lee
,
J.-M.
Lin
,
L.-D.
Tsai
, and
B.-J.
Hwang
,
J. Mater. Chem.
22
,
20977
(
2012
).
10.
B.-J.
Hsieh
,
M.-C.
Tsai
,
C.-J.
Pan
,
W.-N.
Su
,
J.
Rick
,
H.-L.
Chou
,
J.-F.
Lee
, and
B.-J.
Hwang
,
Electrochim. Acta
224
,
452
(
2017
).
11.
K.
Sasaki
,
L.
Zhang
, and
R. R.
Adzic
,
Phys. Chem. Chem. Phys.
10
,
159
(
2008
).
12.
S.
Trasatti
,
J. Electroanal. Chem. Interfacial Electrochem.
111
,
125
(
1980
).
13.
H.
Wang
,
J.
Zheng
,
F.
Peng
, and
H.
Yu
,
Catal. Commun.
33
,
34
(
2013
).
14.
F.
Ye
,
W.
Hu
,
H.
Liu
,
J.
Liu
,
J.
Li
,
X.
Wang
, and
J.
Yang
,
Asia-Pac. J. Chem. Eng.
8
,
271
(
2013
).
15.
F.-D.
Kong
,
S.
Zhang
,
G.-P.
Yin
,
N.
Zhang
,
Z.-B.
Wang
, and
C.-Y.
Du
,
Electrochem. Commun.
14
,
63
(
2012
).
16.
J.
Du
,
J.
Quinson
,
D.
Zhang
,
F.
Bizzotto
,
A.
Zana
, and
M.
Arenz
,
ACS Catal.
11
,
820
(
2021
).
17.
A.
Lim
,
J.
Kim
,
H. J.
Lee
,
H.-J.
Kim
,
S. J.
Yoo
,
J. H.
Jang
,
H.
Young Park
,
Y.-E.
Sung
, and
H. S.
Park
,
Appl. Catal., B
272
,
118955
(
2020
).
18.
J. C.
Cruz
,
V.
Baglio
,
S.
Siracusano
,
R.
Ornelas
,
L. G.
Arriaga
,
V.
Antonucci
, and
A. S.
Aricò
,
Int. J. Hydrogen Energy
37
,
5508
(
2012
).
19.
G. C.
da Silva
,
K. J. J.
Mayrhofer
,
E. A.
Ticianelli
, and
S.
Cherevko
,
J. Electrochem. Soc.
165
,
F1376
(
2018
).
20.
G. C.
da Silva
,
M. R.
Fernandes
, and
E. A.
Ticianelli
,
ACS Catal.
8
,
2081
(
2018
).
21.
F.-D.
Kong
,
J.
Liu
,
A.-X.
Ling
,
Z.-Q.
Xu
,
H.-Y.
Wang
, and
Q.-S.
Kong
,
J. Power Sources
299
,
170
(
2015
).
22.
D.
Mei
,
Z. D.
He
,
Y. L.
Zheng
,
D. C.
Jiang
, and
Y.-X.
Chen
,
Phys. Chem. Chem. Phys.
16
,
13762
(
2014
).
23.
N.
Wakabayashi
,
M.
Takeichi
,
M.
Itagaki
,
H.
Uchida
, and
M.
Watanabe
,
J. Electroanal. Chem.
574
,
339
(
2005
).
24.
B. N.
Grgur
,
N. M.
Marković
, and
P. N.
Ross
,
Can. J. Chem.
75
,
1465
(
1997
).
25.
U. A.
Paulus
,
T. J.
Schmidt
,
H. A.
Gasteiger
, and
R. J.
Behm
,
J. Electroanal. Chem.
495
,
134
(
2001
).
26.
N.
Wakabayashi
,
M.
Takeichi
,
H.
Uchida
, and
M.
Watanabe
,
J. Phys. Chem. B
109
,
5836
(
2005
).
27.
H.
Yano
,
E.
Higuchi
,
H.
Uchida
, and
M.
Watanabe
,
J. Phys. Chem. B
110
,
16544
(
2006
).
28.
N.
Uwitonze
,
D.
Zhou
,
J.
Lei
,
W.
Chen
,
X. Q.
Zuo
,
J.
Cai
, and
Y.-X.
Chen
,
Electrochim. Acta
283
,
1213
(
2018
).
29.
Z. D.
He
,
Y. X.
Chen
,
E.
Santos
, and
W.
Schmickler
,
Angew. Chem., Int. Ed.
57
,
7948
(
2018
).
30.
B. E.
Conway
,
R. E.
White
, and
J. O’M.
Bockris
,
Modern Aspects of Electrochemistry
(
Springer
,
1986
), Vol. 16, pp.
103
.
31.
Z.-Q.
Tang
,
L.-W.
Liao
,
Y.-L.
Zheng
,
J.
Kang
, and
Y.-X.
Chen
,
Chin. J. Chem. Phys.
25
,
469
(
2012
).
32.
J.
Kang
,
C.-H.
Lin
,
Y.
Yao
, and
Y.-X.
Chen
,
Chin. J. Chem. Phys.
27
,
63
(
2014
).
33.
Z.-D.
He
,
J.
Wei
,
Y.-X.
Chen
,
E.
Santos
, and
W.
Schmickler
,
Electrochim. Acta
255
,
391
(
2017
).
34.
G.
Li
,
S.
Li
,
M.
Xiao
,
J.
Ge
,
C.
Liu
, and
W.
Xing
,
Nanoscale
9
,
9291
(
2017
).
35.
F.-D.
Kong
,
S.
Zhang
,
G.-P.
Yin
,
J.
Liu
, and
A.-X.
Ling
,
Catal. Lett.
144
,
242
(
2014
).
36.
D.
Chen
,
Q.
Tao
,
L. W.
Liao
,
S. X.
Liu
,
Y. X.
Chen
, and
S.
Ye
,
Electrocatalysis
2
,
207
(
2011
).
37.
Y. V.
Pleskov
, and
Y. V.
Filinovskii
,
The Rotating Disk Electrode
(
Consultants Bureau
,
New York
,
1976
) pp.
289
.
38.
L.
Atanasoska
,
R.
Atanasoski
, and
S.
Trasatti
,
Vacuum
40
,
91
(
1990
).
39.
M.
Cargnello
,
V. V. T.
Doan-Nguyen
,
T. R.
Gordon
,
R. E.
Diaz
,
E. A.
Stach
,
R. J.
Gorte
,
P.
Fornasiero
, and
C. B.
Murray
,
Science
341
,
771
(
2013
).
40.
B. H. R.
Suryanto
,
Y.
Wang
,
R. K.
Hocking
,
W.
Adamson
, and
C.
Zhao
,
Nat. Commun.
10
,
5599
(
2019
).
42.
L.
Feng
,
X.
Sun
,
S.
Yao
, and
C.
Liu
,
Rotating Electrode Methods and Oxygen Reduction Electrocatalysts
(
Elsevier
,
2014
), p.
67
.
43.
E.
Sitta
,
A. M.
Gómez-Marín
,
A.
Aldaz
, and
J. M.
Feliu
,
Electrochem. Commun.
33
,
39
(
2013
).
44.
V.
Briega-Martos
,
E.
Herrero
, and
J. M.
Feliu
,
Electrochim. Acta
334
,
135452
(
2020
).
45.
W.
Chen
,
M.-L.
Xu
,
M.-F.
Li
,
Z.
Wei
,
J.
Cai
, and
Y.-X.
Chen
,
J. Electroanal. Chem.
872
,
114042
(
2020
).
46.
W.
Chen
,
L.-W.
Liao
,
Z.-D.
He
, and
Y.-X.
Chen
,
J. Electrochem.
20
,
444
(
2014
).
47.
L.-W.
Liao
,
D.
Chen
,
Y.-L.
Zheng
,
M.-F.
Li
,
J.
Kang
, and
Y.-X.
Chen
,
Sci. Sin. Chim.
43
,
178
(
2013
).
48.
N.
Uwitonze
,
W.
Chen
,
D.
Zhou
,
Z.
He
, and
Y.-X.
Chen
,
Sci. China Chem.
61
,
1020
(
2018
).
49.
A.
Parthasarathy
,
S.
Srinivasan
,
A. J.
Appleby
, and
C. R.
Martin
,
J. Electrochem. Soc.
139
,
2856
(
1992
).
50.
A. K.
Galwey
and
M. E.
Brown
,
J. Catal.
60
,
335
(
1979
).
51.
J. M.
Criado
and
M.
Gonzalez
,
Thermochim. Acta
46
,
201
(
1981
).
52.
R. V.
Muraleedharan
,
J. Therm. Anal.
41
,
53
(
1994
).
53.
A. R.
Zeradjanin
,
P.
Narangoda
,
J.
Masa
, and
R.
Schlögl
,
ACS Catal.
12
,
11597
(
2022
).
You do not currently have access to this content.