Room temperature ionic liquids (RT-ILs) are promising electrolytes for electrocatalysis. Understanding the effects of the electrode–electrolyte interface structure on electrocatalysis in RT-ILs is important. Ultrafast mass transport of redox species in N-methyl-N-ethyl-pyrrolidinium polybromide (MEPBr2n+1) enabled evaluation of the reorganization energy (λ), which reflects the solvation structure in the inner Helmholtz plane (IHP). λ was achieved by fitting the electron transfer rate-limited voltammogram at a Pt ultramicroelectrode (UME) to the Marcus–Hush–Chidsey model for heterogeneous electron transfer kinetics. However, it is time-consuming or even impossible to prepare electrode materials, including alloys of numerous compositions in the form of UME, for each experiment. Herein, we report a method to evaluate the λ of MEPBr2n+1 by scanning electrochemical cell microscopy (SECCM), which allows high throughput electrochemical measurements using a single electrode with high spatial resolution. Fast mass transport in the nanosized SECCM tip is critical for achieving heterogeneous electron transfer-limited voltammograms. Furthermore, investigating λ on a high-entropy alloy materials library composed of Pt, Pd, Ru, Ir, and Ag suggests a negative correlation between λ and the work function. Given that the potential of zero charge correlates with the work function of electrodes, this can be attributed to the surface-charge sensitive ionic structure in the IHP of MEPBr2n+1, modulating the solvation energy of the redox-active species in the IHP.

1.
J.
Snyder
,
T.
Fujita
,
M. W.
Chen
, and
J.
Erlebacher
,
Nat. Mater.
9
,
904
(
2010
).
2.
J.
Snyder
,
K.
Livi
, and
J.
Erlebacher
,
Adv. Funct. Mater.
23
,
5494
(
2013
).
3.
T.
Wang
,
Y.
Zhang
,
B.
Huang
,
B.
Cai
,
R. R.
Rao
,
L.
Giordano
,
S.-G.
Sun
, and
Y.
Shao-Horn
,
Nat. Catal.
4
,
753
(
2021
).
4.
M.
Armand
,
F.
Endres
,
D. R.
MacFarlane
,
H.
Ohno
, and
B.
Scrosati
,
Nat. Mater.
8
,
621
(
2009
).
5.
X.
Wang
,
M.
Salari
,
D.-e.
Jiang
,
J. C.
Varela
,
B.
Anasori
,
D. J.
Wesolowski
,
S.
Dai
,
M. W.
Grinstaff
, and
Y.
Gogotsi
,
Nat. Rev. Mater.
5
,
787
(
2020
).
6.
R.
Hayes
,
G. G.
Warr
, and
R.
Atkin
,
Chem. Rev.
115
,
6357
(
2015
).
7.
M. V.
Fedorov
and
A. A.
Kornyshev
,
Chem. Rev.
114
,
2978
(
2014
).
8.
C. Y.
Peñalber
and
S.
Baldelli
,
J. Phys. Chem. Lett.
3
,
844
(
2012
).
9.
A. J.
Bard
and
L. R.
Faulkner
,
Electrochemical Methods: Fundamentals and Applications
,
2nd ed.
(
John Wiley & Sons
,
2000
).
10.
B.
Huang
,
R. R.
Rao
,
S.
You
,
K.
Hpone Myint
,
Y.
Song
,
Y.
Wang
,
W.
Ding
,
L.
Giordano
,
Y.
Zhang
,
T.
Wang
,
S.
Muy
,
Y.
Katayama
,
J. C.
Grossman
,
A. P.
Willard
,
K.
Xu
,
Y.
Jiang
, and
Y.
Shao-Horn
,
JACS Au
1
,
1674
(
2021
).
11.
R. E.
Bangle
,
J.
Schneider
,
D. T.
Conroy
,
B. M.
Aramburu-Trošelj
, and
G. J.
Meyer
,
J. Am. Chem. Soc.
142
,
14940
(
2020
).
12.
R. E.
Bangle
,
J.
Schneider
,
E. J.
Piechota
,
L.
Troian-Gautier
, and
G. J.
Meyer
,
J. Am. Chem. Soc.
142
,
674
(
2020
).
13.
M.
Kim
,
S.
Park
, and
T. D.
Chung
,
Chem. Sci.
13
,
8821
(
2022
).
14.
S.
Park
,
D. H.
Han
,
J. G.
Lee
, and
T. D.
Chung
,
ACS Appl. Energy Mater.
3
,
5285
(
2020
).
15.
C. L.
Bentley
,
M.
Kang
, and
P. R.
Unwin
,
Curr. Opin. Electrochem.
6
,
23
(
2017
).
16.
N.
Ebejer
,
A. G.
Güell
,
S. C. S.
Lai
,
K.
McKelvey
,
M. E.
Snowden
, and
P. R.
Unwin
,
Annu. Rev. Anal. Chem.
6
,
329
(
2013
).
17.
O. J.
Wahab
,
M.
Kang
, and
P. R.
Unwin
,
Curr. Opin. Electrochem.
22
,
120
(
2020
).
18.
Y.
Wang
,
E.
Gordon
, and
H.
Ren
,
Anal. Chem.
92
,
2859
(
2020
).
19.
O. J.
Wahab
,
M.
Kang
,
E.
Daviddi
,
M.
Walker
, and
P. R.
Unwin
,
ACS Catal.
12
,
6578
(
2022
).
20.
A. G.
Güell
,
A. S.
Cuharuc
,
Y. R.
Kim
,
G.
Zhang
,
S.-Y.
Tan
,
N.
Ebejer
, and
P. R.
Unwin
,
ACS Nano
9
,
3558
(
2015
).
21.
T.
Tarnev
,
H. B.
Aiyappa
,
A.
Botz
,
T.
Erichsen
,
A.
Ernst
,
C.
Andronescu
, and
W.
Schuhmann
,
Angew. Chem., Int. Ed.
58
,
14265
(
2019
).
22.
E. B.
Tetteh
,
L.
Banko
,
O. A.
Krysiak
,
T.
Löffler
,
B.
Xiao
,
S.
Varhade
,
S.
Schumacher
,
A.
Savan
,
C.
Andronescu
,
A.
Ludwig
, and
W.
Schuhmann
,
Electrochem. Sci. Adv.
2
,
e2100105
(
2022
).
23.
E.
Daviddi
,
K. L.
Gonos
,
A. W.
Colburn
,
C. L.
Bentley
, and
P. R.
Unwin
,
Anal. Chem.
91
,
9229
(
2019
).
24.
T. A. A.
Batchelor
,
T.
Löffler
,
B.
Xiao
,
O. A.
Krysiak
,
V.
Strotkötter
,
J. K.
Pedersen
,
C. M.
Clausen
,
A.
Savan
,
Y.
Li
,
W.
Schuhmann
,
J.
Rossmeisl
, and
A.
Ludwig
,
Angew. Chem., Int. Ed.
60
,
6932
(
2021
).
25.
S.
Park
,
H.
Kim
,
J.
Chae
, and
J.
Chang
,
J. Phys. Chem. C
120
,
3922
(
2016
).
26.
M. E.
Easton
,
A. J.
Ward
,
B.
Chan
,
L.
Radom
,
A. F.
Masters
, and
T.
Maschmeyer
,
Phys. Chem. Chem. Phys.
18
,
7251
(
2016
).
27.
I.
Ruff
and
V. J.
Friedrich
,
J. Phys. Chem.
76
,
2957
(
1972
).
28.
I.
Rubinstein
,
M.
Bixon
, and
E.
Gileadi
,
J. Phys. Chem.
84
,
715
(
1980
).
29.
H.
Haller
,
M.
Ellwanger
,
A.
Higelin
, and
S.
Riedel
,
Z. Anorg. Allg. Chem.
638
,
553
(
2012
).
30.
C. G.
Williams
,
M. A.
Edwards
,
A. L.
Colley
,
J. V.
Macpherson
, and
P. R.
Unwin
,
Anal. Chem.
81
,
2486
(
2009
).
31.
M. E.
Snowden
,
A. G.
Güell
,
S. C. S.
Lai
,
K.
McKelvey
,
N.
Ebejer
,
M. A.
O’Connell
,
A. W.
Colburn
, and
P. R.
Unwin
,
Anal. Chem.
84
,
2483
(
2012
).
32.
J. J.
Watkins
,
J.
Chen
,
H. S.
White
,
H. D.
Abruña
,
E.
Maisonhaute
, and
C.
Amatore
,
Anal. Chem.
75
,
3962
(
2003
).
33.
34.
L.
Fan
,
Y.
Liu
,
J.
Xiong
,
H. S.
White
, and
S.
Chen
,
ACS Nano
8
,
10426
(
2014
).
35.
B.
Huang
,
K. H.
Myint
,
Y.
Wang
,
Y.
Zhang
,
R. R.
Rao
,
J.
Sun
,
S.
Muy
,
Y.
Katayama
,
J.
Corchado Garcia
,
D.
Fraggedakis
,
J. C.
Grossman
,
M. Z.
Bazant
,
K.
Xu
,
A. P.
Willard
, and
Y.
Shao-Horn
,
J. Phys. Chem. C
125
,
4397
(
2021
).
36.
B. A.
Zhang
,
C.
Costentin
, and
D. G.
Nocera
,
J. Chem. Phys.
153
,
094701
(
2020
).
37.
P.
Bai
and
M. Z.
Bazant
,
Nat. Commun.
5
,
3585
(
2014
).
38.
D. T.
Boyle
,
X.
Kong
,
A.
Pei
,
P. E.
Rudnicki
,
F.
Shi
,
W.
Huang
,
Z.
Bao
,
J.
Qin
, and
Y.
Cui
,
ACS Energy Lett.
5
,
701
(
2020
).
39.
N.
Nishi
,
Y.
Hirano
,
T.
Motokawa
, and
T.
Kakiuchi
,
Phys. Chem. Chem. Phys.
15
,
11615
(
2013
).
40.
M.
Han
,
H.
Kim
,
C.
Leal
,
M.
Negrito
,
J. D.
Batteas
, and
R. M.
Espinosa‐Marzal
,
Adv. Mater. Interfaces
7
,
2001313
(
2020
).
41.
M.
Belotti
,
X.
Lyu
,
L.
Xu
,
P.
Halat
,
N.
Darwish
,
D. S.
Silvester
,
C.
Goh
,
E. I.
Izgorodina
,
M. L.
Coote
, and
S.
Ciampi
,
J. Am. Chem. Soc.
143
,
17431
(
2021
).
42.
H. B.
Michaelson
,
J. Appl. Phys.
48
,
4729
(
1977
).
43.
W.
Schmickler
and
E.
Santos
,
Interfacial Electrochemistry
,
2nd ed.
(
Springer Science & Business Media
,
2010
).
44.
S.
Trasatti
,
J. Electroanal. Chem.
33
,
351
(
1971
).
45.
A.
Patah
,
J.
Bächle
, and
G.
Grampp
,
J. Electrochem. Soc.
166
,
H635
(
2019
).
46.
T.
Xiao
and
X.
Song
,
J. Chem. Phys.
138
,
114105
(
2013
).
47.
T.
Xiao
and
X.
Song
,
J. Chem. Phys.
141
,
134104
(
2014
).
48.
E.
Heid
,
M.
Heindl
,
P.
Dienstl
, and
C.
Schröder
,
J. Chem. Phys.
149
,
044302
(
2018
).
49.
B. D. B.
Aaronson
,
S. C. S.
Lai
, and
P. R.
Unwin
,
Langmuir
30
,
1915
(
2014
).
50.
B. P.
Nadappuram
,
K.
McKelvey
,
J. C.
Byers
,
A. G.
Güell
,
A. W.
Colburn
,
R. A.
Lazenby
, and
P. R.
Unwin
,
Anal. Chem.
87
,
3566
(
2015
).
51.
M.
Dayeh
,
M. R. Z.
Ghavidel
,
J.
Mauzeroll
, and
S. B.
Schougaard
,
ChemElectroChem
6
,
195
(
2019
).
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Supplementary Material

You do not currently have access to this content.