The relationship between structure and dynamics in glassy fluids remains an intriguing open question. Recent work has shown impressive advances in our ability to predict local dynamics using structural features, most notably due to the use of advanced machine learning techniques. Here, we explore whether a simple linear regression algorithm combined with intelligently chosen structural order parameters can reach the accuracy of the current, most advanced machine learning approaches for predicting dynamic propensity. To achieve this, we introduce a method to pinpoint the cage state of the initial configuration—i.e., the configuration consisting of the average particle positions when particle rearrangement is forbidden. We find that, in comparison to both the initial state and the inherent state, the structure of the cage state is highly predictive of the long-time dynamics of the system. Moreover, by combining the cage state information with the initial state, we are able to predict dynamic propensities with unprecedentedly high accuracy over a broad regime of time scales, including the caging regime.

1.
A.
Cavagna
, “
Supercooled liquids for pedestrians
,”
Phys. Rep.
476
,
51
124
(
2009
).
2.
L.
Berthier
and
G.
Biroli
, “
Theoretical perspective on the glass transition and amorphous materials
,”
Rev. Mod. Phys.
83
,
587
(
2011
).
3.
C. P.
Royall
and
S. R.
Williams
, “
The role of local structure in dynamical arrest
,”
Phys. Rep.
560
,
1
75
(
2015
).
4.
H.
Tanaka
,
H.
Tong
,
R.
Shi
, and
J.
Russo
, “
Revealing key structural features hidden in liquids and glasses
,”
Nat. Rev. Phys.
1
,
333
348
(
2019
).
5.
M. D.
Ediger
,
C. A.
Angell
, and
S. R.
Nagel
, “
Supercooled liquids and glasses
,”
J. Phys. Chem.
100
,
13200
13212
(
1996
).
6.
M. D.
Ediger
, “
Can density or entropy fluctuations explain enhanced translational diffusion in glass-forming liquids?
,”
J. Non-Cryst. Solids
235–237
,
10
18
(
1998
).
7.
L.
Berthier
and
G.
Biroli
, “
A statistical mechanics perspective on glasses and aging
,” in
Encyclopedia of Complexity and Systems Science
edited by R. E. Meyers (
Springer
,
2009
), pp.
4209
4240
; available at https://www.springer.com/gp/book/9780387758886.
8.
R.
Candelier
,
A.
Widmer-Cooper
,
J. K.
Kummerfeld
,
O.
Dauchot
,
G.
Biroli
,
P.
Harrowell
, and
D. R.
Reichman
, “
Spatiotemporal hierarchy of relaxation events, dynamical heterogeneities, and structural reorganization in a supercooled liquid
,”
Phys. Rev. Lett.
105
,
135702
(
2010
).
9.
Z.-Y.
Yang
,
D.
Wei
,
A.
Zaccone
, and
Y.-J.
Wang
, “
Machine-learning integrated glassy defect from an intricate configurational-thermodynamic-dynamic space
,”
Phys. Rev. B
104
,
064108
(
2021
).
10.
S.
Ciarella
,
M.
Chiappini
,
E.
Boattini
,
M.
Dijkstra
, and
L.
Janssen
, “
Dynamics of supercooled liquids from static averaged quantities using machine learning
,” arXiv:2212.09338 (
2022
).
11.
E. D.
Cubuk
,
S. S.
Schoenholz
,
J. M.
Rieser
,
B. D.
Malone
,
J.
Rottler
,
D. J.
Durian
,
E.
Kaxiras
, and
A. J.
Liu
, “
Identifying structural flow defects in disordered solids using machine-learning methods
,”
Phys. Rev. Lett.
114
,
108001
(
2015
).
12.
S. S.
Schoenholz
,
E. D.
Cubuk
,
D. M.
Sussman
,
E.
Kaxiras
, and
A. J.
Liu
, “
A structural approach to relaxation in glassy liquids
,”
Nat. Phys.
12
,
469
471
(
2016
).
13.
V.
Bapst
,
T.
Keck
,
A.
Grabska-Barwińska
,
C.
Donner
,
E. D.
Cubuk
,
S. S.
Schoenholz
,
A.
Obika
,
A. W. R.
Nelson
,
T.
Back
,
D.
Hassabis
, and
P.
Kohli
, “
Unveiling the predictive power of static structure in glassy systems
,”
Nat. Phys.
16
,
448
454
(
2020
).
14.
E.
Boattini
,
S.
Marín-Aguilar
,
S.
Mitra
,
G.
Foffi
,
F.
Smallenburg
, and
L.
Filion
, “
Autonomously revealing hidden local structures in supercooled liquids
,”
Nat. Commun.
11
,
5479
(
2020
).
15.
J.
Paret
,
R. L.
Jack
, and
D.
Coslovich
, “
Assessing the structural heterogeneity of supercooled liquids through community inference
,”
J. Chem. Phys.
152
,
144502
(
2020
).
16.
E.
Boattini
,
F.
Smallenburg
, and
L.
Filion
, “
Averaging local structure to predict the dynamic propensity in supercooled liquids
,”
Phys. Rev. Lett.
127
,
088007
(
2021
).
17.
G.
Jung
,
G.
Biroli
, and
L.
Berthier
, “
Predicting dynamic heterogeneity in glass-forming liquids by physics-informed machine learning
,” arXiv:2210.16623 (
2022
).
18.
H.
Shiba
,
M.
Hanai
,
T.
Suzumura
, and
T.
Shimokawabe
, “
Botan: Bond targeting network for prediction of slow glassy dynamics by machine learning relative motion
,”
J. Chem. Phys.
158
,
084503
(
2023
).
19.
F. S.
Pezzicoli
,
G.
Charpiat
, and
F. P.
Landes
, “
SE(3)-equivariant graph neural networks for learning glassy liquids representations
,” arXiv:2211.03226 (
2022
).
20.
D.
Coslovich
,
R. L.
Jack
, and
J.
Paret
, “
Dimensionality reduction of local structure in glassy binary mixtures
,”
J. Chem. Phys.
157
,
204503
(
2022
).
21.
A.
Widmer-Cooper
,
P.
Harrowell
, and
H.
Fynewever
, “
How reproducible are dynamic heterogeneities in a supercooled liquid?
,”
Phys. Rev. Lett.
93
,
135701
(
2004
).
22.
A.
Widmer-Cooper
and
P.
Harrowell
, “
On the study of collective dynamics in supercooled liquids through the statistics of the isoconfigurational ensemble
,”
J. Chem. Phys.
126
,
154503
(
2007
).
23.
W.
Kob
and
H. C.
Andersen
, “
Testing mode-coupling theory for a supercooled binary Lennard-Jones mixture I: The van Hove correlation function
,”
Phys. Rev. E
51
,
4626
(
1995
).
24.
S.
Marín-Aguilar
,
H. H.
Wensink
,
G.
Foffi
, and
F.
Smallenburg
, “
Tetrahedrality dictates dynamics in hard sphere mixtures
,”
Phys. Rev. Lett.
124
,
208005
(
2020
).
25.
R. M.
Alkemade
,
E.
Boattini
,
L.
Filion
, and
F.
Smallenburg
, “
Comparing machine learning techniques for predicting glassy dynamics
,”
J. Chem. Phys.
156
,
204503
(
2022
).
26.
D. J.
Durian
, “
Foam mechanics at the bubble scale
,”
Phys. Rev. Lett.
75
,
4780
(
1995
).
27.
L.
Berthier
and
T. A.
Witten
, “
Compressing nearly hard sphere fluids increases glass fragility
,”
Europhys. Lett.
86
,
10001
(
2009
).
28.
I.
Tah
,
S. A.
Ridout
, and
A. J.
Liu
, “
Fragility in glassy liquids: A structural approach based on machine learning
,”
J. Chem. Phys.
157
,
124501
(
2022
).
29.
D. C.
Rapaport
, “
The event-driven approach to N-body simulation
,”
Prog. Theor. Phys. Suppl.
178
,
5
14
(
2009
).
30.
F.
Smallenburg
, “
Efficient event-driven simulations of hard spheres
,”
Eur. Phys. J. E
45
,
22
(
2022
).
31.
A.
Donev
,
S.
Torquato
, and
F. H.
Stillinger
, “
Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details
,”
J. Comput. Phys.
202
,
737
764
(
2005
).
32.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
, “
LAMMPS—A flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales
,”
Comput. Phys. Commun.
271
,
108171
(
2022
).
33.
D. J.
Evans
and
B. L.
Holian
, “
The Nose–Hoover thermostat
,”
J. Chem. Phys.
83
,
4069
4074
(
1985
).
34.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
, “
Bond-orientational order in liquids and glasses
,”
Phys. Rev. B
28
,
784
(
1983
).
35.
W.
Lechner
and
C.
Dellago
, “
Accurate determination of crystal structures based on averaged local bond order parameters
,”
J. Chem. Phys.
129
,
114707
(
2008
).
36.

The Pearson correlation coefficient is a measure of the degree of linear correlation between two variables. If the Pearson correlation cor(X, Y) between two datasets X and Y is equal to 1, the two variables are perfectly related via a linear function with positive slope. A value of 0 indicates no linear correlation, while a value of −1 would indicate perfect negative linear correlation.

37.
A.
Widmer-Cooper
and
P.
Harrowell
, “
Predicting the long-time dynamic heterogeneity in a supercooled liquid on the basis of short-time heterogeneities
,”
Phys. Rev. Lett.
96
,
185701
(
2006
).
38.
H.
Tong
and
H.
Tanaka
, “
Revealing hidden structural order controlling both fast and slow glassy dynamics in supercooled liquids
,”
Phys. Rev. X
8
,
011041
(
2018
).
39.
F. H.
Stillinger
and
T. A.
Weber
, “
Hidden structure in liquids
,”
Phys. Rev. A
25
,
978
(
1982
).
40.
E.
Bitzek
,
P.
Koskinen
,
F.
Gähler
,
M.
Moseler
, and
P.
Gumbsch
, “
Structural relaxation made simple
,”
Phys. Rev. Lett.
97
,
170201
(
2006
).
41.
F.
Arceri
and
E. I.
Corwin
, “
Vibrational properties of hard and soft spheres are unified at jamming
,”
Phys. Rev. Lett.
124
,
238002
(
2020
).
42.
J. A.
van Meel
,
L.
Filion
,
C.
Valeriani
, and
D.
Frenkel
, “
A parameter-free, solid-angle based, nearest-neighbor algorithm
,”
J. Chem. Phys.
136
,
234107
(
2012
).
43.
R. M.
Alkemade
,
Data Package: Improving the Prediction of Glassy Dynamics by Pinpointing the Local Cage
(
Utrecht University
,
2023
).

Supplementary Material

You do not currently have access to this content.