Allostery in proteins involves, broadly speaking, ligand-induced conformational transitions that modulate function at active sites distal to where the ligand binds. In contrast, the concept of cooperativity (in the sense used in phase transition theory) is often invoked to understand protein folding and, therefore, function. The modern view on allostery is one based on dynamics and hinges on the time-dependent interactions between key residues in a complex network, interactions that determine the free-energy profile for the reaction at the distal site. Here, we merge allostery and cooperativity, and we discuss a joint model with features of both. In our model, the active-site reaction is replaced by the reaction pathway that leads to protein folding, and the presence or absence of the effector is replaced by mutant-vs-wild type changes in key residues. To this end, we employ our recently introduced time-lagged independent component analysis (tICA) correlation approach [Ray et al. Proc. Natl. Acad. Sci. 118(43) (2021), e2100943118] to identify the allosteric role of distant residues in the folded-state dynamics of a large protein. In this work, we apply the technique to identify key residues that have a significant role in the folding of a small, fast folding-protein, chignolin. Using extensive enhanced sampling simulations, we critically evaluate the accuracy of the predictions by mutating each residue one at a time and studying how the mutations change the underlying free energy landscape of the folding process. We observe that mutations in those residues whose associated backbone torsion angles have a high correlation score can indeed lead to loss of stability of the folded configuration. We also provide a rationale based on interaction energies between individual residues with the rest of the protein to explain this effect. From these observations, we conclude that the tICA correlation score metric is a useful tool for predicting the role of individual residues in the correlated dynamics of proteins and can find application to the problem of identifying regions of protein that are either most vulnerable to mutations or—mutatis mutandis—to binding events that affect their functionality.

1.
Y.
Sugita
and
Y.
Okamoto
, “
Replica-exchange molecular dynamics method for protein folding
,”
Chem. Phys. Lett.
314
,
141
151
(
1999
).
2.
S.-H.
Ahn
,
A. A.
Ojha
,
R. E.
Amaro
, and
J. A.
McCammon
, “
Gaussian-accelerated molecular dynamics with the weighted ensemble method: A hybrid method improves thermodynamic and kinetic sampling
,”
J. Chem. Theory Comput.
17
,
7938
7951
(
2021
).
3.
D.
Ray
and
I.
Andricioaei
, “
Weighted ensemble milestoning (WEM): A combined approach for rare event simulations
,”
J. Chem. Phys.
152
,
234114
(
2020
).
4.
A.
Laio
and
M.
Parrinello
, “
Escaping free-energy minima
,”
Proc. Natl. Acad. Sci. U. S. A.
99
,
12562
12566
(
2002
).
5.
G. M.
Torrie
and
J. P.
Valleau
, “
Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling
,”
J. Comput. Phys.
23
,
187
199
(
1977
).
6.
E.
Darve
,
D.
Rodríguez-Gómez
, and
A.
Pohorille
, “
Adaptive biasing force method for scalar and vector free energy calculations
,”
J. Chem. Phys.
128
,
144120
(
2008
).
7.
G. A.
Huber
and
S.
Kim
, “
Weighted-ensemble Brownian dynamics simulations for protein association reactions
,”
Biophys. J.
70
,
97
110
(
1996
).
8.
Q.
Chen
,
W.
Cui
,
Z.
Zhou
, and
L.
Han
, “
Exploration of key residues and conformational change of anti-terminator protein GlpP for ligand and RNA binding
,”
Proteins: Struct., Funct., Bioinf.
89
,
623
631
(
2021
).
9.
E. D.
Merkley
,
B.
Bernard
, and
V.
Daggett
, “
Conformational changes below the Tm: Molecular dynamics studies of the thermal pretransition of ribonuclease A
,”
Biochemistry
47
,
880
892
(
2008
).
10.
J.
Holyoake
and
M. S. P.
Sansom
, “
Conformational change in an MFS protein: MD simulations of LacY
,”
Structure
15
,
873
884
(
2007
).
11.
D.
Ray
,
L.
Le
, and
I.
Andricioaei
, “
Distant residues modulate conformational opening in SARS-CoV-2 spike protein
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2100943118
(
2021
).
12.
D.
Ray
,
R. N.
Quijano
, and
I.
Andricioaei
, “
Point mutations in SARS-CoV-2 variants induce long-range dynamical perturbations in neutralizing antibodies
,”
Chem. Sci.
13
,
7224
7239
(
2022
).
13.
G.
Bouvignies
,
P.
Vallurupalli
,
D. F.
Hansen
,
B. E.
Correia
,
O.
Lange
,
A.
Bah
,
R. M.
Vernon
,
F. W.
Dahlquist
,
D.
Baker
, and
L. E.
Kay
, “
Solution structure of a minor and transiently formed state of a T4 lysozyme mutant
,”
Nature
477
,
111
114
(
2011
).
14.
Z.
Smith
,
P.
Ravindra
,
Y.
Wang
,
R.
Cooley
, and
P.
Tiwary
, “
Discovering protein conformational flexibility through artificial-intelligence-aided molecular dynamics
,”
J. Phys. Chem. B
124
,
8221
8229
(
2020
).
15.
S.
Honda
,
K.
Yamasaki
,
Y.
Sawada
, and
H.
Morii
, “
10 residue folded peptide designed by segment statistics
,”
Structure
12
,
1507
1518
(
2004
).
16.
A.
Suenaga
,
T.
Narumi
,
N.
Futatsugi
,
R.
Yanai
,
Y.
Ohno
,
N.
Okimoto
, and
M.
Taiji
, “
Folding dynamics of 10-residue β-hairpin peptide chignolin
,”
Chem. -Asian J.
2
,
591
598
(
2007
).
17.
T.
Sumi
and
K.
Koga
, “
Theoretical analysis on thermodynamic stability of chignolin
,”
Sci. Rep.
9
,
5186
(
2019
).
18.
Y.
Maruyama
,
S.
Koroku
,
M.
Imai
,
K.
Takeuchi
, and
A.
Mitsutake
, “
Mutation-induced change in chignolin stability from π-turn to α-turn
,”
RSC Adv.
10
,
22797
22808
(
2020
).
19.
S.
Honda
,
T.
Akiba
,
Y. S.
Kato
,
Y.
Sawada
,
M.
Sekijima
,
M.
Ishimura
,
A.
Ooishi
,
H.
Watanabe
,
T.
Odahara
, and
K.
Harata
, “
Crystal structure of a ten-amino acid protein
,”
J. Am. Chem. Soc.
130
,
15327
15331
(
2008
).
20.
C. M.
Davis
,
S.
Xiao
,
D. P.
Raleigh
, and
R. B.
Dyer
, “
Raising the speed limit for β-hairpin formation
,”
J. Am. Chem. Soc.
134
,
14476
14482
(
2012
).
21.
K. A.
McKiernan
,
B. E.
Husic
, and
V. S.
Pande
, “
Modeling the mechanism of CLN025 beta-hairpin formation
,”
J. Chem. Phys.
147
,
104107
(
2017
).
22.
K.
Lindorff-Larsen
,
S.
Piana
,
R. O.
Dror
, and
D. E.
Shaw
, “
How fast-folding proteins fold
,”
Science
334
,
517
520
(
2011
).
23.
L.
Molgedey
and
H. G.
Schuster
, “
Separation of a mixture of independent signals using time delayed correlations
,”
Phys. Rev. Lett.
72
,
3634
3637
(
1994
).
24.
S.
Schultze
and
H.
Grubmüller
, “
Time-lagged independent component analysis of random walks and protein dynamics
,”
J. Chem. Theory Comput.
17
,
5766
5776
(
2021
).
25.
G.
Pérez-Hernández
,
F.
Paul
,
T.
Giorgino
,
G.
De Fabritiis
, and
F.
Noé
, “
Identification of slow molecular order parameters for Markov model construction
,”
J. Chem. Phys.
139
,
015102
(
2013
).
26.
C. R.
Schwantes
and
V. S.
Pande
, “
Improvements in Markov state model construction reveal many non-native interactions in the folding of NTL9
,”
J. Chem. Theory Comput.
9
,
2000
2009
(
2013
).
27.
M. K.
Scherer
,
B.
Trendelkamp-Schroer
,
F.
Paul
,
G.
Pérez-Hernández
,
M.
Hoffmann
,
N.
Plattner
,
C.
Wehmeyer
,
J.-H.
Prinz
, and
F.
Noé
, “
PyEMMA 2: A software package for estimation, validation, and analysis of Markov models
,”
J. Chem. Theory Comput.
11
,
5525
5542
(
2015
).
28.
K.
Tian
,
X.
Zhao
,
X.
Wan
, and
S. S.-T.
Yau
, “
Amino acid torsion angles enable prediction of protein fold classification
,”
Sci. Rep.
10
,
21773
(
2020
).
29.
M.
Larocca
,
F.
Foglia
, and
A.
Cilibrizzi
, “
Dihedral angle calculations to elucidate the folding of peptides through its main mechanical forces
,”
Biochemistry
58
,
1032
1037
(
2019
).
30.
O.
Valsson
,
P.
Tiwary
, and
M.
Parrinello
, “
Enhancing important fluctuations: Rare events and metadynamics from a conceptual viewpoint
,”
Annu. Rev. Phys. Chem.
67
,
159
184
(
2016
).
31.
P.
Tiwary
and
M.
Parrinello
, “
From metadynamics to dynamics
,”
Phys. Rev. Lett.
111
,
230602
(
2013
).
32.
M.
Karplus
and
J. A.
McCammon
, “
Molecular dynamics simulations of biomolecules
,”
Nat. Struct. Biol.
9
,
646
652
(
2002
).
33.
D. M.
Zuckerman
and
L. T.
Chong
, “
Weighted ensemble simulation: Review of methodology, applications, and software
,”
Annu. Rev. Biophys.
46
,
43
57
(
2017
).
34.
A.
Barducci
,
G.
Bussi
, and
M.
Parrinello
, “
Well-tempered metadynamics: A smoothly converging and tunable free-energy method
,”
Phys. Rev. Lett.
100
,
020603
(
2008
).
35.
J.
Lee
et al, “
CHARMM-GUI input generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM simulations using the CHARMM36 additive force field
,”
J. Chem. Theory Comput.
12
,
405
413
(
2016
).
36.
B. R.
Brooks
et al, “
CHARMM: The biomolecular simulation program
,”
J. Comput. Chem.
30
,
1545
1614
(
2009
).
37.
J. C.
Phillips
et al, “
Scalable molecular dynamics on CPU and GPU architectures with NAMD
,”
J. Chem. Phys.
153
,
044130
(
2020
).
38.
G.
Fiorin
,
M. L.
Klein
, and
J.
Hénin
, “
Using collective variables to drive molecular dynamics simulations
,”
Mol. Phys.
111
,
3345
3362
(
2013
).
39.
X.
Daura
,
K.
Gademann
,
B.
Jaun
,
D.
Seebach
,
W. F.
van Gunsteren
, and
A. E.
Mark
, “
Peptide folding: When simulation meets experiment
,”
Angew. Chem., Int. Ed.
38
,
236
240
(
1999
).
40.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
41.
S.
Jo
,
X.
Cheng
,
S. M.
Islam
,
L.
Huang
,
H.
Rui
,
A.
Zhu
,
H. S.
Lee
,
Y.
Qi
,
W.
Han
,
K.
Vanommeslaeghe
,
A. D.
MacKerell
,
B.
Roux
, and
W.
Im
, in
Advances in Protein Chemistry and Structural Biology
, Biomolecular Modelling and Simulations, edited by
T.
Karabencheva-Christova
(
Academic Press
,
2014
), Vol. 96, pp.
235
265
.
42.
S.
Jo
,
T.
Kim
,
V. G.
Iyer
, and
W.
Im
, “
CHARMM-GUI: A web-based graphical user interface for CHARMM
,”
J. Comput. Chem.
29
,
1859
1865
(
2008
).
43.
M.
Bonomi
et al, “
Promoting transparency and reproducibility in enhanced molecular simulations
,”
Nat. Methods
16
,
670
673
(
2019
).
44.
J. F.
Brandts
,
H. R.
Halvorson
, and
M.
Brennan
, “
Consideration of the possibility that the slow step in protein denaturation reactions is due to cis–trans isomerism of proline residues
,”
Biochemistry
14
,
4953
4963
(
1975
).
45.
S.
Kawagoe
,
H.
Nakagawa
,
H.
Kumeta
,
K.
Ishimori
, and
T.
Saio
, “
Structural insight into proline cis/trans isomerization of unfolded proteins catalyzed by the trigger factor chaperone
,”
J. Biol. Chem.
293
,
15095
15106
(
2018
).
46.
R. L.
Baldwin
, “
The search for folding intermediates and the mechanism of protein folding
,”
Annu. Rev. Biophys.
37
,
1
21
(
2008
).
47.
M. T.
Fisher
, “
Proline to the rescue
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
13265
13266
(
2006
).
48.
A. A.
Morgan
and
E.
Rubenstein
, “
Proline: The distribution, frequency, positioning, and common functional roles of proline and polyproline sequences in the human proteome
,”
PLoS One
8
,
e53785
(
2013
).
49.
W. J.
Wedemeyer
,
E.
Welker
, and
H. A.
Scheraga
, “
Proline cis–trans isomerization and protein folding
,”
Biochemistry
41
,
14637
14644
(
2002
).
50.
T.-F.
Fu
,
E. S.
Boja
,
M. K.
Safo
, and
V.
Schirch
, “
Role of proline residues in the folding of serine hydroxymethyltransferase
,”
J. Biol. Chem.
278
,
31088
31094
(
2003
).
51.
F.
Krieger
,
A.
Möglich
, and
T.
Kiefhaber
, “
Effect of proline and glycine residues on dynamics and barriers of loop formation in polypeptide chains
,”
J. Am. Chem. Soc.
127
,
3346
3352
(
2005
).
52.
B. X.
Yan
and
Y. Q.
Sun
, “
Glycine residues provide flexibility for enzyme active sites
,”
J. Biol. Chem.
272
,
3190
3194
(
1997
).
53.
S.
Enemark
,
N. A.
Kurniawan
, and
R.
Rajagopalan
, “
β-hairpin forms by rolling up from C-terminal: Topological guidance of early folding dynamics
,”
Sci. Rep.
2
,
649
(
2012
).
54.
T.
Terada
,
D.
Satoh
,
T.
Mikawa
,
Y.
Ito
, and
K.
Shimizu
, “
Understanding the roles of amino acid residues in tertiary structure formation of chignolin by using molecular dynamics simulation
,”
Proteins: Struct., Funct., Bioinf.
73
,
621
631
(
2008
).

Supplementary Material

You do not currently have access to this content.