Computationally inspired design of organic electronic materials requires robust models of not only the ground and excited electronic states but also of transitions between these states. In this work, we introduce a strategy for obtaining electronic transition dipole moments for the lowest-lying singlet–singlet transition in organic chromophores from time-independent excited-state density-functional tight-binding (ΔDFTB) calculations. Through small-molecule benchmarks and applications to larger chromophores, we explore the accuracy, potential, and limitations of this semiempirical strategy. While more accurate methods are recommended for small systems, we find some evidence for the method’s potential in high-throughput molecular screening applications and in the analysis of molecular dynamics simulations.

1.
D.
Hait
and
M.
Head-Gordon
, “
How accurate is density functional theory at predicting dipole moments? An assessment using a new database of 200 benchmark values
,”
J. Chem. Theory Comput.
14
,
1969
1981
(
2018
).
2.
R.
Sarkar
,
M.
Boggio-Pasqua
,
P.-F.
Loos
, and
D.
Jacquemin
, “
Benchmarking TD-DFT and wave function methods for oscillator strengths and excited-state dipole moments
,”
J. Chem. Theory Comput.
17
,
1117
1132
(
2021
).
3.
C.
Brand
,
W. L.
Meerts
, and
M.
Schmitt
, “
How and why do transition dipole moment orientations depend on conformer structure?
,”
J. Phys. Chem. A
115
,
9612
9619
(
2011
).
4.
M. T.
Sims
,
L. C.
Abbott
,
S. J.
Cowling
,
J. W.
Goodby
, and
J. N.
Moore
, “
Principal molecular axis and transition dipole moment orientations in liquid crystal systems: An assessment based on studies of guest anthraquinone dyes in a nematic host
,”
Phys. Chem. Chem. Phys.
19
,
813
827
(
2017
).
5.
M.
de Wergifosse
and
S.
Grimme
, “
Nonlinear-response properties in a simplified time-dependent density functional theory (sTD-DFT) framework: Evaluation of excited-state absorption spectra
,”
J. Chem. Phys.
150
,
094112
(
2019
).
6.
J.
Han
,
D. R.
Rehn
,
T.
Buckup
, and
A.
Dreuw
, “
Evaluation of single-reference DFT-based approaches for the calculation of spectroscopic signatures of excited states involved in singlet fission
,”
J. Phys. Chem. A
124
,
8446
8460
(
2020
).
7.
D.
Avagliano
,
M.
Bonfanti
,
A.
Nenov
, and
M.
Garavelli
, “
Automatized protocol and interface to simulate QM/MM time-resolved transient absorption at TD-DFT level with COBRAMM
,”
J. Comput. Chem.
43
,
1641
1655
(
2022
).
8.
S.
Tretiak
,
C.
Middleton
,
V.
Chernyak
, and
S.
Mukamel
, “
Exciton Hamiltonian for the bacteriochlorophyll system in the LH2 antenna complex of purple bacteria
,”
J. Phys. Chem. B
104
,
4519
4528
(
2000
).
9.
C.
Friedl
,
D. G.
Fedorov
, and
T.
Renger
, “
Towards a quantitative description of excitonic couplings in photosynthetic pigment-protein complexes: Quantum chemistry driven multiscale approaches
,”
Phys. Chem. Chem. Phys.
24
,
5014
5038
(
2022
).
10.
J.
Aragó
and
A.
Troisi
, “
Dynamics of the excitonic coupling in organic crystals
,”
Phys. Rev. Lett.
114
,
026402
(
2015
).
11.
M. E.
Casida
, “
Time-dependent density functional response theory for molecules
,” in
Recent Advances in Density Functional Methods
, edited by
D. P.
Chong
(
World Scientific
,
Singapore
,
1995
), pp.
155
192
.
12.
F.
Furche
and
R.
Ahlrichs
, “
Adiabatic time-dependent density functional methods for excited state properties
,”
J. Chem. Phys.
117
,
7433
(
2002
).
13.
W.
Liang
,
Z.
Pei
,
Y.
Mao
, and
Y.
Shao
, “
Evaluation of molecular photophysical and photochemical properties using linear response time-dependent density functional theory with classical embedding: Successes and challenges
,”
J. Chem. Phys.
156
,
210901
(
2022
).
14.
M.
Wanko
,
M.
Garavelli
,
F.
Bernardi
,
T. A.
Niehaus
,
T.
Frauenheim
, and
M.
Elstner
, “
A global investigation of excited state surfaces within time-dependent density-functional response theory
,”
J. Chem. Phys.
120
,
1674
1692
(
2004
).
15.
T. A.
Niehaus
, “
Approximate time-dependent density functional theory
,”
J. Mol. Struct.: THEOCHEM
914
,
38
49
(
2009
).
16.
A.
Domínguez
,
B.
Aradi
,
T.
Frauenheim
,
V.
Lutsker
, and
T. A.
Niehaus
, “
Extensions of the time-dependent density functional based tight-binding approach
,”
J. Chem. Theory Comput.
9
,
4901
4914
(
2013
).
17.
R.
Rüger
,
E.
van Lenthe
,
T.
Heine
, and
L.
Visscher
, “
Tight-binding approximations to time-dependent density functional theory—A fast approach for the calculation of electronically excited states
,”
J. Chem. Phys.
144
,
184103
(
2016
).
18.
M.
Gronowski
, “
TD-DFT benchmark: Excited states of atoms and atomic ions
,”
Comput. Theor. Chem.
1108
,
50
56
(
2017
).
19.
M. R.
Silva-Junior
,
M.
Schreiber
,
S. P. A.
Sauer
, and
W.
Thiel
, “
Benchmarks for electronically excited states: Time-dependent density functional theory and density functional theory based multireference configuration interaction
,”
J. Chem. Phys.
129
,
104103
(
2008
).
20.
D.
Jacquemin
,
B.
Mennucci
, and
C.
Adamo
, “
Excited-state calculations with TD-DFT: From benchmarks to simulations in complex environments
,”
Phys. Chem. Chem. Phys.
13
,
16987
16998
(
2011
).
21.
A. D.
Laurent
and
D.
Jacquemin
, “
TD-DFT benchmarks: A review
,”
Int. J. Quantum Chem.
113
,
2019
2039
(
2013
).
22.
Z.-L.
Cai
,
K.
Sendt
, and
J. R.
Reimers
, “
Failure of density-functional theory and time-dependent density-functional theory for large extended π systems
,”
J. Chem. Phys.
117
,
5543
(
2002
).
23.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
, “
A long-range-corrected time-dependent density functional theory
,”
J. Chem. Phys.
120
,
8425
8433
(
2004
).
24.
M. A.
Rohrdanz
,
K. M.
Martins
, and
J. M.
Herbert
, “
A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states
,”
J. Chem. Phys.
130
,
054112
(
2009
).
25.
M. W. D.
Hanson-Heine
,
M. W.
George
, and
N. A.
Besley
, “
Assessment of time-dependent density functional theory with the restricted excitation space approximation for excited state calculations of large systems
,”
Mol. Phys.
116
,
1452
1459
(
2018
).
26.
J.
Liu
and
W.
Thiel
, “
An efficient implementation of semiempirical quantum-chemical orthogonalization-corrected methods for excited-state dynamics
,”
J. Chem. Phys.
148
,
154103
(
2018
).
27.
D.
Hait
and
M.
Head-Gordon
, “
Highly accurate prediction of core spectra of molecules at density functional theory cost: Attaining sub-electronvolt error from a restricted open-shell Kohn–Sham approach
,”
J. Phys. Chem. Lett.
11
,
775
786
(
2020
).
28.
N. A.
Besley
, “
Density functional theory based methods for the calculation of X-ray spectroscopy
,”
Acc. Chem. Res.
53
,
1306
1315
(
2020
).
29.
E.
Vandaele
,
M.
Mališ
, and
S.
Luber
, “
The ΔSCF method for non-adiabatic dynamics of systems in the liquid phase
,”
J. Chem. Phys.
156
,
130901
(
2022
).
30.
T.
Ziegler
,
A.
Rauk
, and
E. J.
Baerends
, “
Calculation of multiplet energies by the Hartree-Fock-Slater method
,”
Theor. Chim. Acta
43
,
261
271
(
1977
).
31.
J.
Gavnholt
,
T.
Olsen
,
M.
Engelund
, and
J.
Schiøtz
, “
Δ self-consistent field method to obtain potential energy surfaces of excited molecules on surfaces
,”
Phys. Rev. B
78
,
075441
(
2008
).
32.
T.
Kowalczyk
,
S. R.
Yost
, and
T. V.
Voorhis
, “
Assessment of the ΔSCF density functional theory approach for electronic excitations in organic dyes
,”
J. Chem. Phys.
134
,
054128
(
2011
).
33.
M.
Filatov
and
S.
Shaik
, “
Application of spin-restricted open-shell Kohn–Sham method to atomic and molecular multiplet states
,”
J. Chem. Phys.
110
,
116
(
1999
).
34.
T.
Kowalczyk
,
T.
Tsuchimochi
,
P.-T.
Chen
,
L.
Top
, and
T.
Van Voorhis
, “
Excitation energies and Stokes shifts from a restricted open-shell Kohn-Sham approach
,”
J. Chem. Phys.
138
,
164101
(
2013
).
35.
J.
Cullen
,
M.
Krykunov
, and
T.
Ziegler
, “
The formulation of a self-consistent constricted variational density functional theory for the description of excited states
,”
Chem. Phys.
391
,
11
18
(
2011
).
36.
Y. C.
Park
,
M.
Krykunov
, and
T.
Ziegler
, “
On the relation between adiabatic time dependent density functional theory (TDDFT) and the ΔSCF-DFT method. Introducing a numerically stable ΔSCF-DFT scheme for local functionals based on constricted variational DFT
,”
Mol. Phys.
113
,
1636
1647
(
2015
).
37.
A. T. B.
Gilbert
,
N. A.
Besley
, and
P. M. W.
Gill
, “
Self-consistent field calculations of excited states using the maximum overlap method (MOM)
,”
J. Phys. Chem. A
112
,
13164
13171
(
2008
).
38.
D.
Hait
and
M.
Head-Gordon
, “
Orbital optimized density functional theory for electronic excited states
,”
J. Phys. Chem. Lett.
12
,
4517
4529
(
2021
).
39.
S. B.
Worster
,
O.
Feighan
, and
F. R.
Manby
, “
Reliable transition properties from excited-state mean-field calculations
,”
J. Chem. Phys.
154
,
124106
(
2021
).
40.
T.
Kowalczyk
,
K.
Le
, and
S.
Irle
, “
Self-consistent optimization of excited states within density-functional tight-binding
,”
J. Chem. Theory Comput.
12
,
313
323
(
2016
).
41.
M. Y.
Deshaye
,
Z. A.
Pollard
,
A.
Banducci
,
A.
Goodey
,
C.
Prommin
,
N.
Kanlayakan
,
N.
Kungwan
, and
T.
Kowalczyk
, “
Accessible and efficient modeling of chromophores within time-independent excited-state density functional tight-binding: Concepts and applications
,” in
Physical Chemistry Research at Undergraduate Institutions: Innovative and Impactful Approaches
(
ACS
,
2022
), Vol. 2, pp.
125
144
.
42.
B.
Hourahine
,
B.
Aradi
,
V.
Blum
,
F.
Bonafé
,
A.
Buccheri
,
C.
Camacho
,
C.
Cevallos
,
M. Y.
Deshaye
,
T.
Dumitrică
,
A.
Dominguez
,
S.
Ehlert
,
M.
Elstner
,
T.
van der Heide
,
J.
Hermann
,
S.
Irle
,
J. J.
Kranz
,
C.
Köhler
,
T.
Kowalczyk
,
T.
Kubař
,
I. S.
Lee
,
V.
Lutsker
,
R. J.
Maurer
,
S. K.
Min
,
I.
Mitchell
,
C.
Negre
,
T. A.
Niehaus
,
A. M. N.
Niklasson
,
A. J.
Page
,
A.
Pecchia
,
G.
Penazzi
,
M. P.
Persson
,
J.
Řezáč
,
C. G.
Sánchez
,
M.
Sternberg
,
M.
Stöhr
,
F.
Stuckenberg
,
A.
Tkatchenko
,
V. W.-z.
Yu
, and
T.
Frauenheim
, “
DFTB+, a software package for efficient approximate density functional theory based atomistic simulations
,”
J. Chem. Phys.
152
,
124101
(
2020
).
43.
H. F.
King
,
R. E.
Stanton
,
H.
Kim
,
R. E.
Wyatt
, and
R. G.
Parr
, “
Corresponding orbitals and the nonorthogonality problem in molecular quantum mechanics
,”
J. Chem. Phys.
47
,
1936
(
1967
).
44.
R.
Broer
, “
On the use of corresponding orbitals for the construction of mutually orthogonal orbital sets
,”
Int. J. Quantum Chem.
45
,
587
590
(
1993
).
45.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
, “
Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties
,”
Phys. Rev. B
58
,
7260
(
1998
).
46.
T. A.
Niehaus
,
M.
Elstner
,
T.
Frauenheim
, and
S.
Suhai
, “
Application of an approximate density-functional method to sulfur containing compounds
,”
J. Mol. Struct.: THEOCHEM
541
,
185
194
(
2001
).
47.
C.
Köhler
, “
Berücksichtigung von spinpolarisationseffekten in einem dichtefunktionalbasierten ansatz
,” Ph.D. thesis,
Universität Paderborn
,
2004
.
48.
D. D.
Johnson
, “
Modified Broyden’s method for accelerating convergence in self consistent calculations
,”
Phys. Rev. B
38
,
12807
(
1988
).
49.
P.
Pulay
, “
Convergence acceleration of iterative sequences. The case of SCF iteration
,”
Chem. Phys. Lett.
73
,
393
398
(
1980
).
50.
T. A.
Niehaus
,
S.
Suhai
,
F.
Della Sala
,
P.
Lugli
,
M.
Elstner
,
G.
Seifert
, and
T.
Frauenheim
, “
Tight-binding approach to time-dependent density-functional response theory
,”
Phys. Rev. B
63
,
085108
(
2001
).
51.
R. B.
Lehoucq
,
D. C.
Sorensen
, and
C.
Yang
, Arpack users’ guide: Solution of large-scale eigenvalue problems by implicitly restarted Arnoldi methods,
1997
.
52.
V.
Lutsker
,
B.
Aradi
, and
T. A.
Niehaus
, “
Implementation and benchmark of a long-range corrected functional in the density-functional based tight-binding method
,”
J. Chem. Phys.
143
,
184107
(
2015
).
53.
D.
Robinson
, “
Comparison of the transition dipole moments calculated by TDDFT with high level wave function theory
,”
J. Chem. Theory Comput.
14
,
5303
5309
(
2018
).
54.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
55.
Q.
Wu
and
T.
Van Voorhis
, “
Direct optimization method to study constrained systems within density-functional theory
,”
Phys. Rev. A
72
,
024502
(
2005
).
56.
B.
Kaduk
,
T.
Kowalczyk
, and
T.
Van Voorhis
, “
Constrained density functional theory
,”
Chem. Rev.
112
,
321
370
(
2012
).
57.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
,
Z.
Gan
,
D.
Hait
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
J.
Kussmann
,
A. W.
Lange
,
K. U.
Lao
,
D. S.
Levine
,
J.
Liu
,
S. C.
McKenzie
,
A. F.
Morrison
,
K. D.
Nanda
,
F.
Plasser
,
D. R.
Rehn
,
M. L.
Vidal
,
Z.-Q.
You
,
Y.
Zhu
,
B.
Alam
,
B. J.
Albrecht
,
A.
Aldossary
,
E.
Alguire
,
J. H.
Andersen
,
V.
Athavale
,
D.
Barton
,
K.
Begam
,
A.
Behn
,
N.
Bellonzi
,
Y. A.
Bernard
,
E. J.
Berquist
,
H. G. A.
Burton
,
A.
Carreras
,
K.
Carter-Fenk
,
R.
Chakraborty
,
A. D.
Chien
,
K. D.
Closser
,
V.
Cofer-Shabica
,
S.
Dasgupta
,
M.
de Wergifosse
,
J.
Deng
,
M.
Diedenhofen
,
H.
Do
,
S.
Ehlert
,
P.-T.
Fang
,
S.
Fatehi
,
Q.
Feng
,
T.
Friedhoff
,
J.
Gayvert
,
Q.
Ge
,
G.
Gidofalvi
,
M.
Goldey
,
J.
Gomes
,
C. E.
González-Espinoza
,
S.
Gulania
,
A. O.
Gunina
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A.
Hauser
,
M. F.
Herbst
,
M.
Hernández Vera
,
M.
Hodecker
,
Z. C.
Holden
,
S.
Houck
,
X.
Huang
,
K.
Hui
,
B. C.
Huynh
,
M.
Ivanov
,
Á.
Jász
,
H.
Ji
,
H.
Jiang
,
B.
Kaduk
,
S.
Kähler
,
K.
Khistyaev
,
J.
Kim
,
G.
Kis
,
P.
Klunzinger
,
Z.
Koczor-Benda
,
J. H.
Koh
,
D.
Kosenkov
,
L.
Koulias
,
T.
Kowalczyk
,
C. M.
Krauter
,
K.
Kue
,
A.
Kunitsa
,
T.
Kus
,
I.
Ladjánszki
,
A.
Landau
,
K. V.
Lawler
,
D.
Lefrancois
,
S.
Lehtola
,
R. R.
Li
,
Y.-P.
Li
,
J.
Liang
,
M.
Liebenthal
,
H.-H.
Lin
,
Y.-S.
Lin
,
F.
Liu
,
K.-Y.
Liu
,
M.
Loipersberger
,
A.
Luenser
,
A.
Manjanath
,
P.
Manohar
,
E.
Mansoor
,
S. F.
Manzer
,
S.-P.
Mao
,
A. V.
Marenich
,
T.
Markovich
,
S.
Mason
,
S. A.
Maurer
,
P. F.
McLaughlin
,
M. F. S. J.
Menger
,
J.-M.
Mewes
,
S. A.
Mewes
,
P.
Morgante
,
J. W.
Mullinax
,
K. J.
Oosterbaan
,
G.
Paran
,
A. C.
Paul
,
S. K.
Paul
,
F.
Pavošević
,
Z.
Pei
,
S.
Prager
,
E. I.
Proynov
,
Á.
Rák
,
E.
Ramos-Cordoba
,
B.
Rana
,
A. E.
Rask
,
A.
Rettig
,
R. M.
Richard
,
F.
Rob
,
E.
Rossomme
,
T.
Scheele
,
M.
Scheurer
,
M.
Schneider
,
N.
Sergueev
,
S. M.
Sharada
,
W.
Skomorowski
,
D. W.
Small
,
C. J.
Stein
,
Y.-C.
Su
,
E. J.
Sundstrom
,
Z.
Tao
,
J.
Thirman
,
G. J.
Tornai
,
T.
Tsuchimochi
,
N. M.
Tubman
,
S. P.
Veccham
,
O.
Vydrov
,
J.
Wenzel
,
J.
Witte
,
A.
Yamada
,
K.
Yao
,
S.
Yeganeh
,
S. R.
Yost
,
A.
Zech
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhang
,
D.
Zuev
,
A.
Aspuru-Guzik
,
A. T.
Bell
,
N. A.
Besley
,
K. B.
Bravaya
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
S.
Coriani
,
C. J.
Cramer
,
G.
Cserey
,
A. E.
DePrince
,
R. A.
DiStasio
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
W. A.
Goddard
,
S.
Hammes-Schiffer
,
T.
Head-Gordon
,
W. J.
Hehre
,
C.-P.
Hsu
,
T.-C.
Jagau
,
Y.
Jung
,
A.
Klamt
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
N. J.
Mayhall
,
C. W.
McCurdy
,
J. B.
Neaton
,
C.
Ochsenfeld
,
J. A.
Parkhill
,
R.
Peverati
,
V. A.
Rassolov
,
Y.
Shao
,
L. V.
Slipchenko
,
T.
Stauch
,
R. P.
Steele
,
J. E.
Subotnik
,
A. J. W.
Thom
,
A.
Tkatchenko
,
D. G.
Truhlar
,
T.
Van Voorhis
,
T. A.
Wesolowski
,
K. B.
Whaley
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
S.
Faraji
,
P. M. W.
Gill
,
M.
Head-Gordon
,
J. M.
Herbert
, and
A. I.
Krylov
, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
58.
M.
Schneider
,
M.
Wilke
,
M.-L.
Hebestreit
,
C.
Henrichs
,
W. L.
Meerts
, and
M.
Schmitt
, “
Excited-state dipole moments and transition dipole orientations of rotamers of 1,2-, 1,3-, and 1,4-dimethoxybenzene
,”
ChemPhysChem
19
,
307
318
(
2018
).
59.
C.
Stross
,
M. W.
Van der Kamp
,
T. A. A.
Oliver
,
J. N.
Harvey
,
N.
Linden
, and
F. R.
Manby
, “
How static disorder mimics decoherence in anisotropy pump–probe experiments on purple-bacteria light harvesting complexes
,”
J. Phys. Chem. B
120
,
11449
11463
(
2016
).
60.
A.
Joshi-Pangu
,
F.
Lévesque
,
H. G.
Roth
,
S. F.
Oliver
,
L.-C.
Campeau
,
D.
Nicewicz
, and
D. A.
DiRocco
, “
Acridinium-based photocatalysts: A sustainable option in photoredox catalysis
,”
J. Org. Chem.
81
,
7244
7249
(
2016
).
61.
A.
Tlili
and
S.
Lakhdar
, “
Acridinium salts and cyanoarenes as powerful photocatalysts: Opportunities in organic synthesis
,”
Angew. Chem., Int. Ed.
60
,
19526
19549
(
2021
).
62.
N. A.
Romero
and
D. A.
Nicewicz
, “
Organic photoredox catalysis
,”
Chem. Rev.
116
,
10075
10166
(
2016
).
63.
S.
Fukuzumi
,
A.
Itoh
,
T.
Suenobu
, and
K.
Ohkubo
, “
Formation of the long-lived charge-separated state of the 9-mesityl-10-methylacridinium cation incorporated into mesoporous aluminosilicate at high temperatures
,”
J. Phys. Chem. C
118
,
24188
24196
(
2014
).
64.
N. A.
Garcia
and
T.
Kowalczyk
, “
Extension of intramolecular charge-transfer state lifetime by encapsulation in porous frameworks
,”
J. Phys. Chem. C
121
,
20673
20679
(
2017
).

Supplementary Material

You do not currently have access to this content.