Predicting the mechanical response of soft gel materials under external deformation is of paramount importance in many areas, such as foods, pharmaceuticals, solid–liquid separations, cosmetics, aerogels, and drug delivery. Most of the understanding of the elasticity of gel materials is based on the concept of fractal scaling with very few microscopic insights. Previous experimental observations strongly suggest that the gel material loses the fractal correlations upon deformation and the range of packing fraction up to which the fractal scaling can be applied is very limited. In addition, correctly implementing the fractal modeling requires identifying the elastic backbone, which is a formidable task. So far, there is no clear understanding of the gel’s elasticity at high packing fractions or the correct length scale that governs its mechanical response. In this work, we undertake extensive numerical simulations to elucidate the different aspects of stress transmission in gel materials. We observe the existence of two percolating networks of compressive and tensile normal forces close to the gel point. We also find that the probability distribution for the compressive and tensile parts normalized by their respective mean shows a universal behavior irrespective of various values of interaction potential and thermal energy and different particle size distributions. Interestingly, there are also a large number of contacts with zero normal force, and, consequently, a peak in the normal force distribution is observed at fn ≈ 0 even at higher pressures. We also identify the critical internal state parameters, such as the mean normal force, force anisotropies, and the average coordination number, and propose simple constitutive relations that relate different components of stress to internal state parameters. The agreement between our model prediction and the simulation observation is excellent. It is shown that the anisotropy in the force networks gives rise to the normal stress difference in soft gel materials. Our results strongly demonstrate that the mechanical response of the gel system is governed mainly by the particle length scale phenomena, with a complex interplay between the compressive and tensile forces at the particle contact.

1.
E.
Zaccarelli
, “
Colloidal gels: Equilibrium and non-equilibrium routes
,”
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
2.
D. S.
Dagur
,
C.
Mondal
, and
S.
Roy
, “
Spatial stress correlations in strong colloidal gel
,” arXiv:2205.11575 (
2022
).
3.
L. C.
Hsiao
,
R. S.
Newman
,
S. C.
Glotzer
, and
M. J.
Solomon
, “
Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels
,”
Proc. Natl. Acad. Sci.
109
,
16029
16034
(
2012
).
4.
H.
Tsurusawa
,
M.
Leocmach
,
J.
Russo
, and
H.
Tanaka
, “
Direct link between mechanical stability in gels and percolation of isostatic particles
,”
Sci. Adv.
5
,
eaav6090
(
2019
).
5.
J. P.
Pantina
and
E. M.
Furst
, “
Elasticity and critical bending moment of model colloidal aggregates
,”
Phys. Rev. Lett.
94
,
138301
(
2005
).
6.
E. M.
Furst
and
J. P.
Pantina
, “
Yielding in colloidal gels due to nonlinear microstructure bending mechanics
,”
Phys. Rev. E
75
,
050402
(
2007
).
7.
J. P.
Pantina
and
E. M.
Furst
, “
Micromechanics and contact forces of colloidal aggregates in the presence of surfactants
,”
Langmuir
24
,
1141
1146
(
2008
).
8.
Y.
Kantor
and
I.
Webman
, “
Elastic properties of random percolating systems
,”
Phys. Rev. Lett.
52
,
1891
(
1984
).
9.
W.-H.
Shih
,
W. Y.
Shih
,
S.-I.
Kim
,
J.
Liu
, and
I. A.
Aksay
, “
Scaling behavior of the elastic properties of colloidal gels
,”
Phys. Rev. A
42
,
4772
(
1990
).
10.
S.
Roy
and
M. S.
Tirumkudulu
, “
Yielding in a strongly aggregated colloidal gel. Part II: Theory
,”
J. Rheol.
60
,
575
586
(
2016
).
11.
S.
Roy
and
M. S.
Tirumkudulu
, “
Micro-mechanical theory of shear yield stress for strongly flocculated colloidal gel
,”
Soft Matter
16
,
1801
(
2020
).
12.
S.
Roy
and
M. S.
Tirumkudulu
, “
Universality in consolidation of colloidal gels
,”
Soft Matter
12
,
9402
9406
(
2016
).
13.
R.
Buscall
,
P. D. A.
Mills
,
J. W.
Goodwin
, and
D. W.
Lawson
, “
Scaling behaviour of the rheology of aggregate networks formed from colloidal particles
,”
J. Chem. Soc., Faraday Trans. 1
84
,
4249
4260
(
1988
).
14.
M. M.
Islam
and
D. R.
Lester
, “
Normal stress differences in the consolidation of strong colloidal gels
,”
Rheol. Acta
60
,
59
76
(
2021
).
15.
R.
Seto
,
R.
Botet
,
M.
Meireles
,
G. K.
Auernhammer
, and
B.
Cabane
, “
Compressive consolidation of strongly aggregated particle gels
,”
J. Rheol.
57
,
1347
1366
(
2013
).
16.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
17.
G.
Brambilla
,
S.
Buzzaccaro
,
R.
Piazza
,
L.
Berthier
, and
L.
Cipelletti
, “
Highly nonlinear dynamics in a slowly sedimenting colloidal gel
,”
Phys. Rev. Lett.
106
,
118302
(
2011
).
18.
N. Y. C.
Lin
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C. K.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,”
Phys. Rev. Lett.
115
,
228304
(
2015
).
19.
Z.
Varga
and
J.
Swan
, “
Hydrodynamic interactions enhance gelation in dispersions of colloids with short-ranged attraction and long-ranged repulsion
,”
Soft Matter
12
,
7670
7681
(
2016
).
20.
J.
De Graaf
,
W. C. K.
Poon
,
M. J.
Haughey
, and
M.
Hermes
, “
Hydrodynamics strongly affect the dynamics of colloidal gelation but not gel structure
,”
Soft Matter
15
,
10
16
(
2019
).
21.
J.
Colombo
and
E.
Del Gado
, “
Stress localization, stiffening, and yielding in a model colloidal gel
,”
J. Rheol.
58
,
1089
1116
(
2014
).
22.
A.
Doménech
,
T.
Doménech
, and
J.
Cebrián
, “
Introduction to the study of rolling friction
,”
Am. J. Phys.
55
,
231
235
(
1987
).
23.
F.
Bonacci
,
X.
Chateau
,
E. M.
Furst
,
J.
Fusier
,
J.
Goyon
, and
A.
Lemaître
, “
Contact and macroscopic ageing in colloidal suspensions
,”
Nat. Mater.
19
,
775
780
(
2020
).
24.
F.
Bonacci
,
X.
Chateau
,
E. M.
Furst
,
J.
Goyon
, and
A.
Lemaître
, “
Yield stress aging in attractive colloidal suspensions
,”
Phys. Rev. Lett.
128
,
018003
(
2022
).
25.
R.
Seto
,
R.
Mari
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening of frictional hard-sphere suspensions
,”
Phys. Rev. Lett.
111
,
218301
(
2013
).
26.
C.-P.
Hsu
,
S. N.
Ramakrishna
,
M.
Zanini
,
N. D.
Spencer
, and
L.
Isa
, “
Roughness-dependent tribology effects on discontinuous shear thickening
,”
Proc. Natl. Acad. Sci.
115
,
5117
5122
(
2018
).
27.
R.
Mari
,
R.
Seto
,
J. F.
Morris
, and
M. M.
Denn
, “
Discontinuous shear thickening in Brownian suspensions by dynamic simulation
,”
Proc. Natl. Acad. Sci.
112
,
15326
15330
(
2015
).
28.
A.
Singh
,
C.
Ness
,
R.
Seto
,
J. J.
de Pablo
, and
H. M.
Jaeger
, “
Shear thickening and jamming of dense suspensions: The ‘roll' of friction
,”
Phys. Rev. Lett.
124
,
248005
(
2020
).
29.
S.
Roy
and
M. S.
Tirumkudulu
, “
Yielding in a strongly aggregated colloidal gel. Part I: 2D simulations
,”
J. Rheol.
60
,
559
574
(
2016
).
30.
M. M.
Islam
and
D. R.
Lester
, “
Consolidation of strong colloidal gels under arbitrary compressive loadings
,”
Soft Matter
17
,
2242
2255
(
2021
).
31.
M. M.
Islam
and
D. R.
Lester
, “
Superposed shear and compression of strong colloidal gels
,”
J. Rheol.
65
,
837
853
(
2021
).
32.
S.
Luding
, “
Cohesive, frictional powders: Contact models for tension
,”
Granular Matter
10
,
235
246
(
2008
).
33.
L. D.
Landau
,
E. M.
Lifšic
,
E. M.
Lifshitz
,
A. M.
Kosevich
, and
L. P.
Pitaevskii
,
Theory of Elasticity
(
Elsevier
,
1986
), Vol. 7.
34.
L.
Rothenburg
and
R. J.
Bathurst
, “
Analytical study of induced anisotropy in idealized granular materials
,”
Geotechnique
39
,
601
614
(
1989
).
35.
C.-h.
Liu
,
S. R.
Nagel
,
D. A.
Schecter
,
S. N.
Coppersmith
,
S.
Majumdar
,
O.
Narayan
, and
T. A.
Witten
, “
Force fluctuations in bead packs
,”
Science
269
,
513
515
(
1995
).
36.
D. M.
Mueth
,
H. M.
Jaeger
, and
S. R.
Nagel
, “
Force distribution in a granular medium
,”
Phys. Rev. E
57
,
3164
(
1998
).
37.
T. S.
Majmudar
and
R. P.
Behringer
, “
Contact force measurements and stress-induced anisotropy in granular materials
,”
Nature
435
,
1079
1082
(
2005
).
38.
F.
Radjai
,
M.
Jean
,
J.-J.
Moreau
, and
S.
Roux
, “
Force distributions in dense two-dimensional granular systems
,”
Phys. Rev. Lett.
77
,
274
(
1996
).
39.
C. S.
O’Hern
,
S. A.
Langer
,
A. J.
Liu
, and
S. R.
Nagel
, “
Random packings of frictionless particles
,”
Phys. Rev. Lett.
88
,
075507
(
2002
).
40.
V. S.
Akella
,
M. M.
Bandi
,
H. G. E.
Hentschel
,
I.
Procaccia
, and
S.
Roy
, “
Force distributions in frictional granular media
,”
Phys. Rev. E
98
,
012905
(
2018
).
41.
F.
Radjai
,
D. E.
Wolf
,
M.
Jean
, and
J.-J.
Moreau
, “
Bimodal character of stress transmission in granular packings
,”
Phys. Rev. Lett.
80
,
61
(
1998
).
42.
V.
Richefeu
,
M. S.
El Youssoufi
,
E.
Azéma
, and
F.
Radjaï
, “
Force transmission in dry and wet granular media
,”
Powder Technol.
190
,
258
263
(
2009
).
43.
V.
Richefeu
,
F.
Radjaı
, and
M. S.
El Youssoufi
, “
Stress transmission in wet granular materials
,”
Eur. Phys. J. E
21
,
359
369
(
2006
).
44.
V.
Richefeu
,
M. S.
El Youssoufi
, and
F.
Radjaï
, “
Shear strength properties of wet granular materials
,”
Phys. Rev. E
73
,
051304
(
2006
).
45.
F. A.
Gilabert
,
J. N.
Roux
, and
A.
Castellanos
, “
Computer simulation of model cohesive powders: Influence of assembling procedure and contact laws on low consolidation states
,”
Phys. Rev. E
75
,
011303
(
2007
).
46.
A. D.
Dinsmore
and
D. A.
Weitz
, “
Direct imaging of three-dimensional structure and topology of colloidal gels
,”
J. Phys.: Condens. Matter
14
,
7581
(
2002
).
You do not currently have access to this content.