Room-temperature sodium–sulfur batteries are promising next-generation energy storage alternatives for electric vehicles and large-scale applications. However, they still suffer from critical issues such as polysulfide shuttling, which inhibit them from commercialization. In this work, using first-principles methods, we investigated the cluster formation of soluble Na2S8 molecules, the reductive decomposition of ethylene carbonate (EC) and propylene carbonate (PC), and the role of fluoroethylene carbonate (FEC) additive in the solid electrolyte interphase formation on the Na anode. The clustering of Na2S8 in an EC solvent is found to be more favorable than in a PC solvent. In the presence of an electron-rich Na (001) surface, EC decomposition undergoes a two-electron transfer reaction with a barrier of 0.19 eV for a ring-opening process, whereas PC decomposition is difficult on the same surface. Although the reaction kinetics of an FEC ring opening in the EC and PC solvents are quite similar, the reaction mechanisms of the open FEC are found to be different in each solvent, although both lead to the production of NaF on the surface. The thick NaF layers reduce the extent of charge transfer to Na2S8 at the anode/electrolyte interface, thus decelerating the Na2S8 decomposition reaction. Our results provide an atomistic insight into the interfacial phenomena between the Na-metal anode surface and electrolyte media.

1.
H.
Ryu
,
T.
Kim
,
K.
Kim
,
J.-H.
Ahn
,
T.
Nam
,
G.
Wang
, and
H.-J.
Ahn
, “
Discharge reaction mechanism of room-temperature sodium–sulfur battery with tetra ethylene glycol dimethyl ether liquid electrolyte
,”
J. Power Sources
196
(
11
),
5186
5190
(
2011
).
2.
S.
Xin
,
Y.-X.
Yin
,
Y.-G.
Guo
, and
L.-J.
Wan
, “
A high-energy room-temperature sodium-sulfur battery
,”
Adv. Mater.
26
(
8
),
1261
1265
(
2014
).
3.
A.
Manthiram
and
X.
Yu
, “
Ambient temperature sodium–sulfur batteries
,”
Small
11
(
18
),
2108
2114
(
2015
).
4.
A. P.
Cohn
,
N.
Muralidharan
,
R.
Carter
,
K.
Share
, and
C. L.
Pint
, “
Anode-free sodium battery through in situ plating of sodium metal
,”
Nano Lett.
17
(
2
),
1296
1301
(
2017
).
5.
X.
Yu
and
A.
Manthiram
, “
Capacity enhancement and discharge mechanisms of room-temperature sodium–sulfur batteries
,”
ChemElectroChem
1
(
8
),
1275
1280
(
2014
).
6.
Y. X.
Wang
,
B.
Zhang
,
W.
Lai
,
Y.
Xu
,
S. L.
Chou
,
H. K.
Liu
, and
S. X.
Dou
, “
Room-temperature sodium-sulfur batteries: A comprehensive review on Research progress and cell chemistry
,”
Adv. Energy Mater.
7
(
24
),
1602829
(
2017
).
7.
Y. X.
Ren
,
H. R.
Jiang
,
T. S.
Zhao
,
L.
Zeng
, and
C.
Xiong
, “
Remedies of capacity fading in room-temperature sodium-sulfur batteries
,”
J. Power Sources
396
,
304
313
(
2018
).
8.
F.
Ma
,
P.
Hu
,
T.
Wang
,
J.
Liang
,
R.
Han
,
J.
Han
, and
Q.
Li
, “
Yolk@Shell structured MnS@nitrogen-doped carbon as a sulfur host and polysulfide conversion booster for lithium/sodium sulfur batteries
,”
ACS Appl. Energy Mater.
4
(
4
),
3487
3494
(
2021
).
9.
M. D.
Slater
,
D.
Kim
,
E.
Lee
, and
C. S.
Johnson
, “
Sodium-ion batteries
,”
Adv. Funct. Mater.
23
(
8
),
947
958
(
2013
).
10.
T.
Yim
,
M.-S.
Park
,
J.-S.
Yu
,
K. J.
Kim
,
K. Y.
Im
,
J.-H.
Kim
,
G.
Jeong
,
Y. N.
Jo
,
S.-G.
Woo
,
K. S.
Kang
,
I.
Lee
, and
Y.-J.
Kim
, “
Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries
,”
Electrochim. Acta
107
,
454
460
(
2013
).
11.
S.
Wei
,
L.
Ma
,
K. E.
Hendrickson
,
Z.
Tu
, and
L. A.
Archer
, “
Metal–sulfur battery cathodes based on PAN–sulfur composites
,”
J. Am. Chem. Soc.
137
(
37
),
12143
12152
(
2015
).
12.
P.
Adelhelm
,
P.
Hartmann
,
C. L.
Bender
,
M.
Busche
,
C.
Eufinger
, and
J.
Janek
, “
From lithium to sodium: Cell chemistry of room temperature sodium–air and sodium–sulfur batteries
,”
Beilstein J. Nanotechnol.
6
,
1016
1055
(
2015
).
13.
C.-W.
Park
,
H.-S.
Ryu
,
K.-W.
Kim
,
J.-H.
Ahn
,
J.-Y.
Lee
, and
H.-J.
Ahn
, “
Discharge properties of all-solid sodium–sulfur battery using poly (ethylene oxide) electrolyte
,”
J. Power Sources
165
(
1
),
450
454
(
2007
).
14.
S.-S.
Chi
,
X.-G.
Qi
,
Y.-S.
Hu
, and
L.-Z.
Fan
, “
3D flexible carbon felt host for highly stable sodium metal anodes
,”
Adv. Energy Mater.
8
(
15
),
1702764
(
2018
).
15.
C.
Bao
,
B.
Wang
,
P.
Liu
,
H.
Wu
,
Y.
Zhou
,
D.
Wang
,
H.
Liu
, and
S.
Dou
, “
Solid electrolyte interphases on sodium metal anodes
,”
Adv. Funct. Mater.
30
(
52
),
2004891
(
2020
).
16.
H.
He
,
D.
Sun
,
Y.
Tang
,
H.
Wang
, and
M.
Shao
, “
Understanding and improving the initial coulombic efficiency of high-capacity anode materials for practical sodium ion batteries
,”
Energy Storage Mater
23
,
233
251
(
2019
).
17.
N.
Takenaka
,
H.
Sakai
,
Y.
Suzuki
,
P.
Uppula
, and
M.
Nagaoka
, “
A computational chemical insight into microscopic additive effect on solid electrolyte interphase film formation in sodium-ion batteries: Suppression of unstable film growth by intact fluoroethylene carbonate
,”
J. Phys. Chem. C
119
(
32
),
18046
18055
(
2015
).
18.
S.
Komaba
,
W.
Murata
,
T.
Ishikawa
,
N.
Yabuuchi
,
T.
Ozeki
,
T.
Nakayama
,
A.
Ogata
,
K.
Gotoh
, and
K.
Fujiwara
, “
Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries
,”
Adv. Funct. Mater.
21
(
20
),
3859
3867
(
2011
).
19.
Q.
Liu
,
D.
Mu
,
B.
Wu
,
L.
Wang
,
L.
Gai
, and
F.
Wu
, “
Density functional theory Research into the reduction mechanism for the solvent/additive in a sodium-ion battery
,”
ChemSusChem
10
(
4
),
786
796
(
2017
).
20.
R.
Mogensen
,
D.
Brandell
, and
R.
Younesi
, “
Solubility of the solid electrolyte interphase (SEI) in sodium ion batteries
,”
ACS Energy Lett.
1
(
6
),
1173
1178
(
2016
).
21.
N.
Weadock
,
N.
Varongchayakul
,
J.
Wan
,
S.
Lee
,
J.
Seog
, and
L.
Hu
, “
Determination of mechanical properties of the SEI in sodium ion batteries via colloidal probe microscopy
,”
Nano Energy
2
(
5
),
713
719
(
2013
).
22.
N.
Yabuuchi
,
K.
Kubota
,
M.
Dahbi
, and
S.
Komaba
, “
Research development on sodium-ion batteries
,”
Chem. Rev.
114
(
23
),
11636
11682
(
2014
).
23.
C.
Bommier
and
X.
Ji
, “
Electrolytes, SEI formation, and binders: A review of nonelectrode factors for sodium-ion battery anodes
,”
Small
14
(
16
),
1703576
(
2018
).
24.
D.-J.
Lee
,
J.-W.
Park
,
I.
Hasa
,
Y.-K.
Sun
,
B.
Scrosati
, and
J.
Hassoun
, “
Alternative materials for sodium ion–sulphur batteries
,”
J. Mater. Chem. A
1
(
17
),
5256
5261
(
2013
).
25.
A. Y. S.
Eng
,
V.
Kumar
,
Y.
Zhang
,
J.
Luo
,
W.
Wang
,
Y.
Sun
,
W.
Li
, and
Z. W.
Seh
, “
Room-temperature sodium–sulfur batteries and beyond: Realizing practical high energy systems through anode, cathode, and electrolyte engineering
,”
Adv. Energy Mater.
11
(
14
),
2003493
(
2021
).
26.
E.
Wang
,
Y.
Niu
,
Y.-X.
Yin
, and
Y.-G.
Guo
, “
Manipulating electrode/electrolyte interphases of sodium-ion batteries: Strategies and perspectives
,”
ACS Mater. Lett.
3
(
1
),
18
41
(
2021
).
27.
B.
Sun
,
P.
Xiong
,
U.
Maitra
,
D.
Langsdorf
,
K.
Yan
,
C.
Wang
,
J.
Janek
,
D.
Schröder
, and
G.
Wang
, “
Design strategies to enable the efficient use of sodium metal anodes in high-energy batteries
,”
Adv. Mater.
32
(
18
),
1903891
(
2020
).
28.
Z. W.
Seh
,
J.
Sun
,
Y.
Sun
, and
Y.
Cui
, “
A highly reversible room-temperature sodium metal anode
,”
ACS Cent. Sci.
1
(
8
),
449
455
(
2015
).
29.
S.
Wei
,
S.
Xu
,
A.
Agrawral
,
S.
Choudhury
,
Y.
Lu
,
Z.
Tu
,
L.
Ma
, and
L. A.
Archer
, “
A stable room-temperature sodium–sulfur battery
,”
Nat. Commun.
7
(
1
),
11722
(
2016
).
30.
S.
Komaba
,
T.
Ishikawa
,
N.
Yabuuchi
,
W.
Murata
,
A.
Ito
, and
Y.
Ohsawa
, “
Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries
,”
ACS Appl. Mater. Interfaces
3
(
11
),
4165
4168
(
2011
).
31.
Y.
Lee
,
J.
Lee
,
H.
Kim
,
K.
Kang
, and
N.-S.
Choi
, “
Highly stable linear carbonate-containing electrolytes with fluoroethylene carbonate for high-performance cathodes in sodium-ion batteries
,”
J. Power Sources
320
,
49
58
(
2016
).
32.
H.
Nakai
,
T.
Kubota
,
A.
Kita
, and
A.
Kawashima
, “
Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes
,”
J. Electrochem. Soc.
158
(
7
),
A798
A801
(
2011
).
33.
M.
Dahbi
,
T.
Nakano
,
N.
Yabuuchi
,
S.
Fujimura
,
K.
Chihara
,
K.
Kubota
,
J.-Y.
Son
,
Y.-T.
Cui
,
H.
Oji
, and
S.
Komaba
, “
Effect of hexafluorophosphate and fluoroethylene carbonate on electrochemical performance and the surface layer of hard carbon for sodium-ion batteries
,”
ChemElectroChem
3
(
11
),
1856
1867
(
2016
).
34.
J.
Wu
,
J.
Liu
,
Z.
Lu
,
K.
Lin
,
Y.-Q.
Lyu
,
B.
Li
,
F.
Ciucci
, and
J.-K.
Kim
, “
Non-flammable electrolyte for dendrite-free sodium-sulfur battery
,”
Energy Storage Mater.
23
,
8
16
(
2019
).
35.
L. M.
Bloi
,
J.
Pampel
,
S.
Dörfler
,
H.
Althues
, and
S.
Kaskel
, “
Sodium sulfide cathodes superseding hard carbon pre-sodiation for the production and operation of sodium–sulfur batteries at room temperature
,”
Adv. Energy Mater.
10
(
7
),
1903245
(
2020
).
36.
Y.
Zhang
and
V.
Viswanathan
, “
Not all fluorination is the same: Unique effects of fluorine functionalization of ethylene carbonate for tuning solid-electrolyte interphase in Li metal batteries
,”
Langmuir
36
(
39
),
11450
11466
(
2020
).
37.
L. E.
Camacho-Forero
,
T. W.
Smith
,
S.
Bertolini
, and
P. B.
Balbuena
, “
Reactivity at the lithium–metal anode surface of lithium–sulfur batteries
,”
J. Phys. Chem. C
119
(
48
),
26828
26839
(
2015
).
38.
X.
Yu
and
A.
Manthiram
, “
Performance enhancement and mechanistic studies of room-temperature sodium–sulfur batteries with a carbon-coated functional nafion separator and a Na2S/activated carbon nanofiber cathode
,”
Chem. Mater.
28
(
3
),
896
905
(
2016
).
39.
A.
Gupta
,
A.
Bhargav
,
J.-P.
Jones
,
R. V.
Bugga
, and
A.
Manthiram
, “
Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium–sulfur batteries
,”
Chem. Mater.
32
(
5
),
2070
2077
(
2020
).
40.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
(
1
),
15
50
(
1996
).
41.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
(
1
),
558
561
(
1993
).
42.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular-dynamics simulation of the liquid-metal--amorphous-semiconductor transition in germanium
,”
Phys. Rev. B
49
(
20
),
14251
14269
(
1994
).
43.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
(
3
),
1758
1775
(
1999
).
44.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
(
24
),
17953
17979
(
1994
).
45.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
(
18
),
3865
3868
(
1996
).
46.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
(
7
),
1456
1465
(
2011
).
47.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
(
3
),
1695
1697
(
1985
).
48.
S.
Nosé
, “
A unified formulation of the constant temperature molecular dynamics methods
,”
J. Chem. Phys.
81
(
1
),
511
519
(
1984
).
49.
J. R.
Maple
,
U.
Dinur
, and
A. T.
Hagler
, “
Derivation of force fields for molecular mechanics and dynamics from ab initio energy surfaces
,”
Proc. Natl. Acad. Sci. U. S. A.
85
(
15
),
5350
5354
(
1988
).
50.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
(
1
),
33
38
(
1996
).
51.
S.
Singsen
,
S.
Suthirakun
,
P.
Hirunsit
, and
P. B.
Balbuena
, “
Surface film formation from sodium polysulfide decomposition on sodium-metal anode surface
,”
J. Phys. Chem. C
126
(
39
),
16615
16626
(
2022
) .
52.
H. J.
Monkhorst
and
J. D.
Pack
, “
Special points for brillouin-zone integrations
,”
Phys. Rev. B
13
(
12
),
5188
5192
(
1976
).
53.
H.
Xiao
,
J.
Tahir-Kheli
, and
W. A.
Goddard
, “
Accurate band gaps for semiconductors from density functional theory
,”
J. Phys. Chem. Lett.
2
(
3
),
212
217
(
2011
).
54.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
, “
A grid-based bader analysis algorithm without lattice bias
,”
J. Phys.: Condens. Matter
21
(
8
),
084204
(
2009
).
55.
G.
Henkelman
,
A.
Arnaldsson
, and
H.
Jónsson
, “
A fast and robust algorithm for Bader decomposition of charge density
,”
Comput. Mater. Sci.
36
(
3
),
354
360
(
2006
).
56.
T.
Bucko
, “
Ab InitioCalculations of free-energy reaction barriers
,”
J. Phys.: Condens. Matter
20
(
6
),
64211
(
2008
).
57.
G.
Ciccotti
and
M.
Ferrario
, “
Blue moon approach to rare events
,”
Mol. Simul.
30
(
11–12
),
787
793
(
2004
).
58.
Y.
Wang
,
Y.
Zhang
,
H.
Cheng
,
Z.
Ni
,
Y.
Wang
,
G.
Xia
,
X.
Li
, and
X.
Zeng
, “
Research progress toward room temperature sodium sulfur batteries: A review
,”
Molecules
26
(
6
),
1535
(
2021
).
59.
A.
Andersen
,
N. N.
Rajput
,
K. S.
Han
,
H.
Pan
,
N.
Govind
,
K. A.
Persson
,
K. T.
Mueller
, and
V.
Murugesan
, “
Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane
,”
Chem. Mater.
31
(
7
),
2308
2319
(
2019
).
60.
P.
Xiang
,
Z.
Tian
,
Y.
Li
,
Y.
Gao
,
Z.
Wang
, and
L.
Chen
, “
Theoretical exploration of the structural evolution of sodium sulfide clusters in Na-S batteries
,”
Appl. Surf. Sci.
613
,
155906
(
2023
).
61.
S.
Singsen
,
I.
Fongkaew
,
P.
Hirunsit
, and
S.
Suthirakun
, “
Suppressing polysulfides shuttling and promoting sulfur utilization via transition metal and nitrogen Co-doping on graphdiyne cathodes of lithium-sulfur batteries: A first-principles modeling
,”
ACS Appl. Energy Mater.
5
(
8
),
9722
9732
(
2022
).
62.
A.
Gupta
and
A.
Manthiram
, “
Unifying the clustering kinetics of lithium polysulfides with the nucleation behavior of Li2S in lithium–sulfur batteries
,”
J. Mater. Chem. A
9
(
22
),
13242
13251
(
2021
).
63.
Y.
Ma
and
P. B.
Balbuena
, “
DFT study of reduction mechanisms of ethylene carbonate and fluoroethylene carbonate on Li+-Adsorbed Si clusters
,”
J. Electrochem. Soc.
161
(
8
),
E3097
E3109
(
2014
).
64.
P. B.
Balbuena
and
Y. X.
Wang
,
Lithium-Ion Batteries: Solid-Electrolyte Interphase
(
Imperial College Press
,
London
,
2004
).
65.
Y.
Wang
and
P. B.
Balbuena
, “
Theoretical insights into the reductive decompositions of propylene carbonate and vinylene carbonate: Density functional theory studies
,”
J. Phys. Chem. B
106
(
17
),
4486
4495
(
2002
).
66.
X. J.
Wang
,
H. S.
Lee
,
H.
Li
,
X. Q.
Yang
, and
X. J.
Huang
, “
The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries
,”
Electrochem. Commun.
12
(
3
),
386
389
(
2010
).
67.
X.
Chen
,
X.
Shen
,
B.
Li
,
H. J.
Peng
,
X. B.
Cheng
,
B. Q.
Li
,
X. Q.
Zhang
,
J. Q.
Huang
, and
Q.
Zhang
, “
Ion–solvent complexes promote gas evolution from electrolytes on a sodium metal anode
,”
Angew. Chem., Int. Ed.
57
(
3
),
734
737
(
2018
).
68.
X.
Chen
and
Q.
Zhang
, “
Atomic insights into the fundamental interactions in lithium battery electrolytes
,”
Acc. Chem. Res.
53
(
9
),
1992
2002
(
2020
).
69.
X.-m.
Zhao
,
Q.
Zhu
,
S.-d.
Xu
,
L.
Chen
,
Z.-j.
Zuo
,
X.-m.
Wang
,
S.-b.
Liu
, and
D.
Zhang
, “
Fluoroethylene carbonate as an additive in a carbonates-based electrolyte for enhancing the specific capacity of room-temperature sodium-sulfur cell
,”
J. Electroanal. Chem.
832
,
392
398
(
2019
).
70.
G. M.
Veith
,
M.
Doucet
,
R. L.
Sacci
,
B.
Vacaliuc
,
J. K.
Baldwin
, and
J. F.
Browning
, “
Determination of the solid electrolyte interphase structure grown on a silicon electrode using a fluoroethylene carbonate additive
,”
Sci. Rep.
7
(
1
),
6326
(
2017
).
71.
K.
Leung
,
S. B.
Rempe
,
M. E.
Foster
,
Y.
Ma
,
J. M.
Martinez del la Hoz
,
N.
Sai
, and
P. B.
Balbuena
, “
Modeling electrochemical decomposition of fluoroethylene carbonate on silicon anode surfaces in lithium ion batteries
,”
J. Electrochem. Soc.
161
(
3
),
A213
A221
(
2013
).
72.
Y.
Okuno
,
K.
Ushirogata
,
K.
Sodeyama
, and
Y.
Tateyama
, “
Decomposition of the fluoroethylene carbonate additive and the glue effect of lithium fluoride products for the solid electrolyte interphase: An ab initio study
,”
Phys. Chem. Chem. Phys.
18
(
12
),
8643
8653
(
2016
).
73.
R.
Jung
,
M.
Metzger
,
D.
Haering
,
S.
Solchenbach
,
C.
Marino
,
N.
Tsiouvaras
,
C.
Stinner
, and
H. A.
Gasteiger
, “
Consumption of fluoroethylene carbonate (FEC) on Si-C composite electrodes for Li-ion batteries
,”
J. Electrochem. Soc.
163
(
8
),
A1705
A1716
(
2016
).
74.
L.
Lin
,
C.
Zhang
,
Y.
Huang
,
Y.
Zhuang
,
M.
Fan
,
J.
Lin
,
L.
Wang
,
Q.
Xie
, and
D.-L.
Peng
, “
Challenge and strategies in room temperature sodium–sulfur batteries: A comparison with lithium–sulfur batteries
,”
Small
18
(
43
),
2107368
(
2022
).
75.
S. J.
An
,
J.
Li
,
C.
Daniel
,
D.
Mohanty
,
S.
Nagpure
, and
D. L.
Wood
, “
The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling
,”
Carbon
105
,
52
76
(
2016
).
76.
A.
Wang
,
S.
Kadam
,
H.
Li
,
S.
Shi
, and
Y.
Qi
, “
Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries
,”
npj Comput. Mater.
4
(
1
),
15
(
2018
).
77.
F. C.
Brown
,
C.
Gähwiller
,
H.
Fujita
,
A. B.
Kunz
,
W.
Scheifley
, and
N.
Carrera
, “
Extreme-ultraviolet spectra of ionic crystals
,”
Phys. Rev. B
2
(
6
),
2126
2138
(
1970
).
78.
A.
Rafie
,
J. W.
Kim
,
K. K.
Sarode
, and
V.
Kalra
, “
A review on the use of carbonate-based electrolytes in Li-S batteries: A comprehensive approach enabling solid-solid direct conversion reaction
,”
Energy Storage Mater.
50
,
197
224
(
2022
).

Supplementary Material

You do not currently have access to this content.