The formation of vapor bubbles in a metastable liquid, cavitation, is an activated process due to the free energy cost of having both phases at contact. Such an energetic penalty enables the existence of the liquid beyond its thermodynamic borders. Establishing the stability limits of a liquid as ubiquitous as water has important practical implications and has thereby attracted a lot of attention. Different experimental strategies and theoretical analyses have been employed to measure and predict the cavitation line, or the pressure–temperature kinetic stability border of liquid water. Understanding the location of the cavitation line requires knowing the cavitation rate dependence on pressure and temperature. Such dependency is difficult to obtain in experiments, and we use molecular simulations with the TIP4P/2005 model to fill this gap. By deeply overstretching liquid water below the saturation pressure, we are able to observe and quantify spontaneous cavitation. To deal with a lower overstretching regime, we resort to the Seeding technique, which consists of analyzing simulations of a liquid containing a vapor bubble under the theoretical framework of Classical Nucleation Theory. Combining spontaneous cavitation with Seeding, we get a wide overview of the cavitation rate. We study two different temperatures (450 and 550 K) and complement our perspective with the results previously obtained at 296.4 K [Menzl et al., Proc. Natl. Acad. Sci. 113, 13582 (2016)] to establish a broad simulation-experiment comparison. We find a good agreement between simulations and both isobaric heating and isochoric cooling experiments using quartz inclusions. We are, however, unable to reconcile simulations with other experimental techniques. Our results predict a decrease in the solid–liquid interfacial free energy as the liquid becomes increasingly overstretched with a temperature independent Tolman length of 0.1 nm. Therefore, the capillarity approximation underestimates the nucleation rate. Nonetheless, it provides a fair indication of the location of the cavitation line given the steep rate vs pressure dependence. Overall, our work provides a comprehensive view of the water cavitation phenomenon and sets an efficient strategy to investigate it with molecular simulations.

1.
Q.
Zheng
,
D. J.
Durben
,
G. H.
Wolf
, and
C. A.
Angell
, “
Liquids at large negative pressures: Water at the homogeneous nucleation limit
,”
Science
254
,
829
832
(
1991
).
2.
F.
Caupin
, “
Liquid-vapor interface, cavitation, and the phase diagram of water
,”
Phys. Rev. E
71
,
051605
(
2005
).
3.
G.
Menzl
,
M. A.
Gonzalez
,
P.
Geiger
,
F.
Caupin
,
J. L. F.
Abascal
,
C.
Valeriani
, and
C.
Dellago
, “
Molecular mechanism for cavitation in water under tension
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
13582
13587
(
2016
).
4.
P. G.
Debenedetti
and
H. E.
Stanley
, “
Supercooled and glassy water
,”
Phys. Today
56
,
40
(
2003
).
5.
M.
Shusser
and
D.
Weihs
, “
Explosive boiling of a liquid droplet
,”
Int. J. Multiphase Flow
25
,
1561
1573
(
1999
).
6.
M.
Shusser
,
T.
Ytrehus
, and
D.
Weihs
, “
Kinetic theory analysis of explosive boiling of a liquid droplet
,”
Fluid Dyn. Res.
27
,
353
(
2000
).
7.
A.
Toramaru
, “
Vesiculation process and bubble size distributions in ascending magmas with constant velocities
,”
J. Geophys. Res.: Solid Earth
94
,
17523
17542
, (
1989
).
8.
H.
Massol
and
T.
Koyaguchi
, “
The effect of magma flow on nucleation of gas bubbles in a volcanic conduit
,”
J. Volcanol. Geotherm. Res.
143
,
69
88
(
2005
).
9.
C. E.
Brennen
,
Cavitation and Bubble Dynamics
(
Cambridge University Press
,
2014
).
10.
K. S.
Suslick
, “
Sonochemistry
,”
Science
247
,
1439
1445
(
1990
).
11.
K. S.
Suslick
,
M. M.
Mdleleni
, and
J. T.
Ries
, “
Chemistry induced by hydrodynamic cavitation
,”
J. Am. Chem. Soc.
119
,
9303
9304
(
1997
).
12.
V.
Skripov
, in
Water and Steam
, edited by
J.
Straub
and
K.
Scheffler
(
Pergamon
,
Elmsford
,
1980
).
13.
E.
Herbert
,
S.
Balibar
, and
F.
Caupin
, “
Cavitation pressure in water
,”
Phys. Rev. E
74
,
041603
(
2006
).
14.
W. J.
Galloway
, “
An experimental study of acoustically induced cavitation in liquids
,”
J. Acoust. Soc. Am.
26
,
849
857
(
1954
).
15.
M. E. M.
Azouzi
,
C.
Ramboz
,
J.-F.
Lenain
, and
F.
Caupin
, “
A coherent picture of water at extreme negative pressure
,”
Nat. Phys.
9
,
38
41
(
2013
).
16.
S. J.
Henderson
and
R. J.
Speedy
, “
A Berthelot-Bourdon tube method for studying water under tension
,”
J. Phys. E: Sci. Instrum.
13
,
778
(
1980
).
17.
K.
Hiro
,
Y.
Ohde
, and
Y.
Tanzawa
, “
Stagnations of increasing trends in negative pressure with repeated cavitation in water/metal Berthelot tubes as a result of mechanical sealing
,”
J. Phys. D: Appl. Phys.
36
,
592
(
2003
).
18.
T. D.
Wheeler
and
A. D.
Stroock
, “
The transpiration of water at negative pressures in a synthetic tree
,”
Nature
455
,
208
212
(
2008
).
19.
F.
Caupin
and
E.
Herbert
, “
Cavitation in water: A review
,”
C. R. Phys.
7
,
1000
1017
(
2006
).
20.
F.
Magaletti
,
M.
Gallo
, and
C. M.
Casciola
, “
Water cavitation from ambient to high temperatures
,”
Sci. Rep.
11
,
20801
(
2021
).
21.
H.
Kanno
,
R. J.
Speedy
, and
C. A.
Angell
, “
Supercooling of water to −92 °C under pressure
,”
Science
189
,
880
881
(
1975
).
22.
P. G.
Debenedetti
,
Metastable Liquids: Concepts and Principles
(
Princeton University Press
,
1996
).
23.
K. F.
Kelton
,
Crystal Nucleation in Liquids and Glasses
(
Academic
,
Boston
,
1991
).
24.
M.
Blander
, and
J. L.
Katz
. , “
Bubble nucleation in liquids
,”
AIChE J.
21
,
833
848
(
1975
).
25.
J. C.
Fisher
, “
The fracture of liquids
,”
J. Appl. Phys.
19
,
1062
1067
(
1948
).
26.
Z.-J.
Wang
,
C.
Valeriani
, and
D.
Frenkel
, “
Homogeneous bubble nucleation driven by local hot spots: A molecular dynamics study
,”
J. Phys. Chem. B
113
,
3776
3784
(
2008
).
27.
S. L.
Meadley
and
F. A.
Escobedo
, “
Thermodynamics and kinetics of bubble nucleation: Simulation methodology
,”
J. Chem. Phys.
137
,
074109
(
2012
).
28.
P.
Rosales-Pelaez
,
M. I.
Garcia-Cid
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
, “
Seeding approach to bubble nucleation in superheated Lennard-Jones fluids
,”
Phys. Rev. E
100
,
052609
(
2019
).
29.
P.
Rosales-Pelaez
,
I.
Sanchez-Burgos
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
, “
Seeding approach to nucleation in the NVT ensemble: The case of bubble cavitation in overstretched Lennard Jones fluids
,”
Phys. Rev. E
101
,
022611
(
2020
).
30.
I.
Sanchez-Burgos
,
P. M.
de Hijes
,
P.
Rosales-Pelaez
,
C.
Vega
, and
E.
Sanz
, “
Equivalence between condensation and boiling in a Lennard-Jones fluid
,”
Phys. Rev. E
102
,
062609
(
2020
).
31.
S.
Marchio
,
S.
Meloni
,
A.
Giacomello
,
C.
Valeriani
, and
C. M.
Casciola
, “
Pressure control in interfacial systems: Atomistic simulations of vapor nucleation
,”
J. Chem. Phys.
148
,
064706
(
2018
).
32.
V. G.
Baidakov
and
K. R.
Protsenko
, “
Molecular dynamics simulation of cavitation in a Lennard-Jones liquid at negative pressures
,”
Chem. Phys. Lett.
760
,
138030
(
2020
).
33.
C. P.
Lamas
,
E.
Sanz
,
C.
Vega
, and
E. G.
Noya
, “
Estimation of bubble cavitation rates in a symmetrical Lennard-Jones mixture by NVT Seeding simulations
,”
J. Chem. Phys.
(unpublished).
34.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
35.
F.
Caupin
,
A.
Arvengas
,
K.
Davitt
,
M. E. M.
Azouzi
,
K. I.
Shmulovich
,
C.
Ramboz
,
D. A.
Sessoms
, and
A. D.
Stroock
, “
Exploring water and other liquids at negative pressure
,”
J. Phys.: Condens. Matter
24
,
284110
(
2012
).
36.
K.
Davitt
,
E.
Rolley
,
F.
Caupin
,
A.
Arvengas
, and
S.
Balibar
, “
Equation of state of water under negative pressure
,”
J. Chem. Phys
133
,
174507
(
2010
).
37.
M.
Greenspan
and
C. E.
Tschiegg
, “
Radiation-induced acoustic cavitation; apparatus and some results
,”
J. Res. Natl. Bur. Stand., Sect. C
71
,
299
(
1967
).
38.
K.
Davitt
,
A.
Arvengas
, and
F.
Caupin
, “
Water at the cavitation limit: Density of the metastable liquid and size of the critical bubble
,”
Europhys. Lett.
90
,
16002
(
2010
).
39.
L. G.
MacDowell
,
V. K.
Shen
, and
J. R.
Errington
, “
Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems
,”
J. Chem. Phys.
125
,
034705
(
2006
).
40.
M.
Schrader
,
P.
Virnau
, and
K.
Binder
, “
Simulation of vapor-liquid coexistence in finite volumes: A method to compute the surface free energy of droplets
,”
Phys. Rev. E
79
,
061104
(
2009
).
41.
K.
Binder
,
B. J.
Block
,
P.
Virnau
, and
A.
Tröster
, “
Beyond the van der Waals loop: What can be learned from simulating Lennard-Jones fluids inside the region of phase coexistence
,”
Am. J. Phys.
80
,
1099
1109
(
2012
).
42.
X.-M.
Bai
and
M.
Li
, “
Calculation of solid-liquid interfacial free energy: A classical nucleation theory based approach
,”
J. Chem. Phys.
124
,
124707
(
2006
).
43.
R. G.
Pereyra
,
I.
Szleifer
, and
M. A.
Carignano
, “
Temperature dependence of ice critical nucleus size
,”
J. Chem. Phys.
135
,
034508
(
2011
).
44.
B. C.
Knott
,
V.
Molinero
,
M. F.
Doherty
, and
B.
Peters
, “
Homogeneous nucleation of methane hydrates: Unrealistic under realistic conditions
,”
J. Am. Chem. Soc.
134
,
19544
19547
(
2012
).
45.
E.
Sanz
,
C.
Vega
,
J. R.
Espinosa
,
R.
Caballero-Bernal
,
J. L. F.
Abascal
, and
C.
Valeriani
, “
Homogeneous ice nucleation at moderate supercooling from molecular simulation
,”
J. Am. Chem. Soc.
135
,
15008
15017
(
2013
).
46.
J. R.
Espinosa
,
C.
Vega
,
C.
Valeriani
, and
E.
Sanz
, “
Seeding approach to crystal nucleation
,”
J. Chem. Phys.
144
,
034501
(
2016
).
47.
R.
Becker
and
W.
Döring
, “
Kinetische behandlung der keimbildung in ubersattigten dampfen
,”
Ann. Phys.
416
,
719
752
(
1935
).
48.
J. W.
Gibbs
, “
On the equilibrium of heterogeneous substances
,”
Trans. Connect. Acad. Sci.
3
,
108
248
(
1876
).
49.
J. W.
Gibbs
, “
On the equilibrium of heterogeneous substances
,”
Trans. Connect. Acad. Sci.
16
,
343
524
(
1878
).
50.
P.
Montero de Hijes
,
J. R.
Espinosa
,
E.
Sanz
, and
C.
Vega
, “
Interfacial free energy of a liquid-solid interface: Its change with curvature
,”
J. Chem. Phys.
151
,
144501
(
2019
).
51.
P.
Montero de Hijes
,
J. R.
Espinosa
,
V.
Bianco
,
E.
Sanz
, and
C.
Vega
, “
Interfacial free energy and Tolman length of curved liquid–solid interfaces from equilibrium studies
,”
J. Phys. Chem. C
124
,
8795
8805
(
2020
).
52.
P.
Montero de Hijes
,
K.
Shi
,
E. G.
Noya
,
E. E.
Santiso
,
K. E.
Gubbins
,
E.
Sanz
, and
C.
Vega
, “
The Young–Laplace equation for a solid–liquid interface
,”
J. Chem. Phys.
153
,
191102
(
2020
).
53.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
54.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
).
55.
G. J.
Martyna
,
M. L.
Klein
, and
M.
Tuckerman
, “
Nosé–Hoover chains: The canonical ensemble via continuous dynamics
,”
J. Chem. Phys.
97
,
2635
2643
(
1992
).
56.
D. R.
Wheeler
and
J.
Newman
, “
A less expensive Ewald lattice sum
,”
Chem. Phys. Lett.
366
,
537
(
2002
).
57.
S. E.
Feller
,
R. W.
Pastor
,
A.
Rojnuckarin
,
S.
Bogusz
, and
B. R.
Brooks
, “
Effect of electrostatic force truncation on interfacial and transport properties of water
,”
J. Phys. Chem.
100
,
17011
17020
(
1996
).
58.
I.
Sanchez-Burgos
,
M. C.
Muniz
,
J. R.
Espinosa
, and
A. Z.
Panagiotopoulos
, “
A deep potential model for liquid-vapor equilibrium and cavitation rates of water
,” arXiv:2301.12008 (
2023
).
59.
B.
Hess
,
H.
Bekker
,
H. J. C.
Berendsen
, and
J. G. E. M.
Fraaije
, “
LINCS: A linear constraint solver for molecular simulations
,”
J. Comput. Chem.
18
,
1463
1472
(
1997
).
60.
B.
Hess
, “
P-LINCS: A parallel linear constraint solver for molecular simulation
,”
J. Chem. Theory Comput.
4
,
116
122
(
2008
).
61.
C.
Vega
,
J. L. F.
Abascal
, and
I.
Nezbeda
, “
Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice
,”
J. Chem. Phys.
125
,
034503
(
2006
).
62.
C.
Vega
and
E.
de Miguel
, “
Surface tension of the most popular models of water by using the test-area simulation method
,”
J. Chem. Phys.
126
,
154707
(
2007
).
63.
J. S.
Rowlinson
and
B.
Widom
,
Molecular Theory of Capillarity
(
Courier Corporation
,
2013
).
64.
J.
Gibbs
, The collected works, Vol. I,
1928
.
65.
R. C.
Tolman
, “
The effect of droplet size on surface tension
,”
J. Chem. Phys.
17
,
333
337
(
1949
).
66.
I. S.
Joung
and
T. E.
Cheatham
, “
Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations
,”
J. Phys. Chem. B
112
,
9020
9041
(
2008
).
67.
J. R.
Espinosa
,
E.
Sanz
,
C.
Valeriani
, and
C.
Vega
, “
Homogeneous ice nucleation evaluated for several water models
,”
J. Chem. Phys.
141
,
18C529
(
2014
).
68.
L.
Filion
,
M.
Hermes
,
R.
Ni
, and
M.
Dijkstra
, “
Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: A comparison of simulation techniques
,”
J. Chem. Phys.
133
,
244115
(
2010
).
69.
P. V.
Skripov
and
A. P.
Skripov
, “
The phenomenon of superheat of liquids: In memory of Vladimir P. Skripov
,”
Int. J. Thermophys.
31
,
816
830
(
2010
).
70.
J. R.
Espinosa
,
A.
Zaragoza
,
P.
Rosales-Pelaez
,
C.
Navarro
,
C.
Valeriani
,
C.
Vega
, and
E.
Sanz
, “
Interfacial free energy as the key to the pressure-induced deceleration of ice nucleation
,”
Phys. Rev. Lett.
117
,
135702
(
2016
).
71.
J.
Alejandre
and
G. A.
Chapela
, “
The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions
,”
J. Chem. Phys.
132
,
014701
(
2010
).
72.
L. J.
Briggs
, “
Limiting negative pressure of water
,”
J. Appl. Phys.
21
,
721
722
(
1950
).
73.
C.
Wurster
,
M.
Köhler
,
R.
Pecha
,
W.
Eisenmenger
,
D.
Suhr
,
U.
Irmer
,
F.
Brümmer
, and
D.
Hülser
, “
Negative pressure measurements of water using the glass fiber optic hydrophone
,” in
1st World Congress on Ultrasonics
(
J. Herbertz
,
1995
), pp.
635
638
.
You do not currently have access to this content.