We detail several interesting features in the dynamics of an equilaterally shaped electronic excitation-transfer (EET) trimer with distance-dependent intermonomer excitation-transfer couplings. In the absence of electronic-vibrational coupling, symmetric and antisymmetric superpositions of two single-monomer excitations are shown to exhibit purely constructive, oscillatory, and purely destructive interference in the EET to the third monomer, respectively. In the former case, the transfer is modulated by motion in the symmetrical framework-expansion vibration induced by the Franck–Condon excitation. Distortions in the shape of the triangular framework degrade that coherent EET while activating excitation transfer in the latter case of an antisymmetric initial state. In its symmetrical configuration, two of the three single-exciton states of the trimer are degenerate. This degeneracy is broken by the Jahn–Teller-active framework distortions. The calculations illustrate closed, approximately circular pseudo-rotational wave-packet dynamics on both the lower and the upper adiabatic potential energy surfaces of the degenerate manifold, which lead to the acquisition after one cycle of physically meaningful geometric (Berry) phases of π. Another manifestation of Berry-phase development is seen in the evolution of the vibrational probability density of a wave packet on the lower Jahn–Teller adiabatic potential comprising a superposition of clockwise and counterclockwise circular motions. The circular pseudo-rotation on the upper cone is shown to stabilize the adiabatic electronic state against non-adiabatic internal conversion via the conical intersection, a dynamical process analogous to Slonczewski resonance. Strategies for initiating and monitoring these various dynamical processes experimentally using pre-resonant impulsive Raman excitation, short-pulse absorption, and multi-dimensional wave-packet interferometry are outlined in brief.

1.
T.
Förster
, “
Transfer mechanisms of electronic excitation
,”
Discuss. Faraday Soc.
27
,
7
17
(
1959
).
2.
T.
Förster
, in
Modern Quantum Chemistry
, edited by
O.
Sinanoglu
(
Academic Press
,
New York
,
1965
), Vol. 111, p.
93
.
3.
S.
Rackovsky
and
R.
Silbey
, “
Electronic energy transfer in impure solids. I. Two molecules embedded in a lattice
,”
Mol. Phys.
25
,
61
72
(
1973
).
4.
A.
Matro
and
J. A.
Cina
, “
Theoretical studies of time-resolved fluorescence anisotropy from coupled chromophore pairs
,”
J. Phys. Chem.
99
,
2568
2582
(
1995
).
5.
J. A.
Cina
,
D. S.
Kilin
, and
T. S.
Humble
, “
Wave packet interferometry for short-time electronic energy transfer: Multidimensional optical spectroscopy in the time domain
,”
J. Chem. Phys.
118
,
46
61
(
2003
).
6.
J. A.
Cina
and
G. R.
Fleming
, “
Vibrational coherence transfer and trapping as sources for long-lived quantum beats in polarized emission from energy transfer complexes
,”
J. Phys. Chem. A
108
,
11196
11208
(
2004
).
7.
J. D.
Biggs
and
J. A.
Cina
, “
Studies of impulsive vibrational influence on ultrafast electronic excitation transfer
,”
J. Phys. Chem. A
116
,
1683
1693
(
2012
).
8.
L.
Yang
,
S.
Caprasecca
,
B.
Mennucci
, and
S.
Jang
, “
Theoretical investigation of the mechanism and dynamics of intramolecular coherent resonance energy transfer in soft molecules: A case study of dithia-anthracenophane
,”
J. Am. Chem. Soc.
132
,
16911
16921
(
2010
).
9.
S. J.
Jang
, “
Effects of donor-acceptor quantum coherence and non-Markovian bath on the distance dependence of resonance energy transfer
,”
J. Phys. Chem. C
123
,
5767
5775
(
2019
).
10.
C. W.
Kim
and
I.
Franco
, “
Theory of dissipation pathways in open quantum systems
,”
J. Chem. Phys.
154
,
084109
(
2021
).
11.
M. K.
Lee
,
P.
Huo
, and
D. F.
Coker
, “
Semiclassical path integral dynamics: Photosynthetic energy transfer with realistic environment interactions
,”
Annu. Rev. Phys. Chem.
67
,
639
668
(
2016
).
12.
S. A.
Oh
,
D. F.
Coker
, and
D. A. W.
Hutchinson
, “
Optimization of energy transport in the Fenna-Matthews-Olson complex via site-varying pigment-protein interactions
,”
J. Chem. Phys.
150
,
085102
(
2019
).
13.
T.
Renger
, “
Semiclassical modified Redfield and generalized Förster theories of exciton relaxation/transfer in light harvesting complexes: The quest for the principle of detailed balance
,”
J. Phys. Chem. B
125
,
6406
6416
(
2021
).
14.
S.
Kundu
,
R.
Dani
, and
N.
Makri
, “
B800-to-B850 relaxation of excitation energy in bacterial light harvesting: All-state, all-mode path integral simulations
,”
J. Chem. Phys.
157
,
015101
(
2022
).
15.
J.
Kim
,
T. C.
Nguyen-Phan
,
A. T.
Gardiner
,
R. J.
Cogdell
,
G. D.
Scholes
, and
M.
Cho
, “
Low-frequency vibronic mixing modulates the excitation energy flow in bacterial light-harvesting complex II
,”
J. Phys. Chem. Lett.
12
,
6292
6298
(
2021
).
16.
J.
Kim
,
T. C.
Nguyen-Phan
,
A. T.
Gardiner
,
T. H.
Yoon
,
R. J.
Cogdell
,
M.
Cho
, and
G. D.
Scholes
, “
Vibrational modes promoting exciton relaxation in the B850 band of LH2
,”
J. Phys. Chem. Lett.
13
,
1099
1106
(
2022
).
17.
D.
Heussman
,
J.
Kittell
,
P. H.
von Hippel
, and
A. H.
Marcus
, “
Temperature-dependent local conformations and conformational distributions of cyanine dimer labeled single-stranded–double-stranded DNA junctions by 2D fluorescence spectroscopy
,”
J. Chem. Phys.
156
,
045101
(
2022
).
18.
M.
Cho
,
Two-Dimensional Optical Spectroscopy
(
CRC Press
,
Boca Raton
,
2009
).
19.
S.
Mukamel
, “
Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitations
,”
Annu. Rev. Phys. Chem.
51
,
691
729
(
2000
).
20.
D. M.
Jonas
, “
Two-dimensional femtosecond spectroscopy
,”
Annu. Rev. Phys. Chem.
54
,
425
463
(
2003
).
21.
E.
Harel
, “
Four-dimensional coherent electronic Raman spectroscopy
,”
J. Chem. Phys.
146
,
154201
(
2017
).
22.
J. A.
Cina
,
Getting Started on Time-Resolved Molecular Spectroscopy
(
Oxford University Press
,
New York
,
2022
).
23.
G. D.
Scholes
,
G. R.
Fleming
,
L. X.
Chen
,
A.
Aspuru-Guzik
,
A.
Buchleitner
,
D. F.
Coker
,
G. S.
Engel
,
R.
van Grondelle
,
A.
Ishizaki
,
D. M.
Jonas
,
J. S.
Lundeen
,
J. K.
McCusker
,
S.
Mukamel
,
J. P.
Ogilvie
,
A.
Olaya-Castro
,
M. A.
Ratner
,
F. C.
Spano
,
K. B.
Whaley
, and
X.
Zhu
, “
Using coherence to enhance function in chemical and biophysical systems
,”
Nature
543
,
647
656
(
2017
).
24.
J.
Cao
,
R. J.
Cogdell
,
D. F.
Coker
,
H.-G.
Duan
,
J.
Hauer
,
U.
Kleinekathöfer
,
T. L. C.
Jansen
,
T.
Mančal
,
R. J. D.
Miller
,
J. P.
Ogilvie
,
V. I.
Prokhorenko
,
T.
Renger
,
H.-S.
Tan
,
R.
Tempelaar
,
M.
Thorwart
,
E.
Thyrhaug
,
S.
Westenhoff
, and
D.
Zigmantas
, “
Quantum biology revisited
,”
Sci. Adv.
6
,
eaaz4888
(
2020
).
25.
A.
Noguchi
,
Y.
Shikano
,
K.
Toyoda
, and
S.
Urabe
, “
Aharonov-Bohm effect in the tunnelling of a quantum rotor in a linear Paul trap
,”
Nat. Commun.
5
,
3868
(
2014
).
26.
D. J.
Gorman
,
B.
Hemmerling
,
E.
Megidish
,
S. A.
Moeller
,
P.
Schindler
,
M.
Sarovar
, and
H.
Haeffner
, “
Engineering vibrationally assisted energy transfer in a trapped-ion quantum simulator
,”
Phys. Rev. X
8
,
011038
(
2018
).
27.
F.
Hakelberg
,
P.
Kiefer
,
M.
Wittemer
,
U.
Warring
, and
T.
Schaetz
, “
Interference in a prototype of a two-dimensional ion trap array quantum simulator
,”
Phys. Rev. Lett.
123
,
100504
(
2019
).
28.
U.
Warring
,
F.
Hakelberg
,
P.
Kiefer
,
M.
Wittemer
, and
T.
Schaetz
, “
Trapped ion architecture for multi-dimensional quantum simulations
,”
Adv. Quantum Technol.
3
,
1900137
(
2020
).
29.
H. C.
Longuet-Higgins
, “
Some recent developments in the theory of molecular energy levels
,”
Adv. Spectrosc.
2
,
429
472
(
1961
).
30.
C. A.
Mead
and
D. G.
Truhlar
, “
On the determination of Born–Oppenheimer nuclear motion wave functions including complications due to conical intersections and identical nuclei
,”
J. Chem. Phys.
70
,
2284
2296
(
1979
).
31.
M. V.
Berry
and
M.
Wilkinson
, “
Diabolical points in the spectra of triangles
,”
Proc. R. Soc. London, Ser. A
392
,
15
43
(
1984
).
32.
M. V.
Berry
, “
Quantal phase factors accompanying adiabatic changes
,”
Proc. R. Soc. London, Ser. A
392
,
45
57
(
1984
).
33.
Geometric Phases in Physics
, edited by
F.
Wilczek
and
A.
Shapere
(
World Scientific
,
Singapore
,
1989
).
34.
C. A.
Mead
, “
The geometric phase in molecular systems
,”
Rev. Mod. Phys.
64
,
51
85
(
1992
).
35.
D. R.
Yarkony
, “
Perspective on ‘Some recent developments in the theory of molecular energy levels
,’”
Theor. Chem. Acc.
103
,
242
247
(
2000
).
36.
J. C.
Slonczewski
and
V. L.
Moruzzi
, “
Excited states in the dynamic Jahn–Teller effect
,”
Physics
3
,
237
254
(
1967
).
37.
R.
Dani
and
N.
Makri
, “
Time-evolving quantum superpositions in open systems and the rich content of coherence maps
,”
J. Phys. Chem. B
126
,
9361
9375
(
2022
).
38.
A. J.
Kiessling
and
J. A.
Cina
, “
Monitoring the evolution of intersite and interexciton coherence in electronic excitation transfer via wave-packet interferometry
,”
J. Chem. Phys.
152
,
244311
(
2020
).
39.
S.
Tomasi
and
I.
Kassal
, “
Classification of coherent enhancements of light-harvesting processes
,”
J. Phys. Chem. Lett.
11
,
2348
2355
(
2020
).
40.
J.
Cao
and
R. J.
Silbey
, “
Optimization of exciton trapping in energy transfer processes
,”
J. Phys. Chem. A
113
,
13825
13838
(
2009
).
41.
S.
Jang
, “
Theory of multichromophoric coherent resonance energy transfer: A polaronic quantum master equation approach
,”
J. Chem. Phys.
135
,
034105
(
2011
).
42.
G.
Engelhardt
and
J.
Cao
, “
Tuning the Aharonov-Bohm effect with dephasing in nonequilibrium transport
,”
Phys. Rev. B
99
,
075436
(
2019
).
43.
H.
Hossein-Nejad
,
A.
Olaya-Castro
, and
G. D.
Scholes
, “
Phonon-mediated path-interference in electronic energy transfer
,”
J. Chem. Phys.
136
,
024112
(
2012
).
44.
S. S.
Skourtis
,
D. H.
Waldeck
, and
D. N.
Beratan
, “
Inelastic electron tunneling erases coupling-pathway interferences
,”
J. Phys. Chem. B
108
,
15511
15518
(
2004
).
45.
D. N.
Beratan
,
S. S.
Skourtis
,
I. A.
Balabin
,
A.
Balaeff
,
S.
Keinan
,
R.
Venkatramani
, and
D.
Xiao
, “
Steering electrons on moving pathways
,”
Acc. Chem. Res.
42
,
1669
1678
(
2009
).
46.
J. A.
Cina
,
T. J.
Smith
, Jr.
, and
V.
Romero-Rochin
, “
Time-resolved optical tests for electronic geometric phase development
,”
Adv. Chem. Phys.
83
,
1
42
(
1993
).
47.
J. A.
Cina
, “
Phase-controlled optical pulses and the adiabatic electronic sign change
,”
Phys. Rev. Lett.
66
,
1146
1149
(
1991
).
48.
V.
Romero-Rochin
and
J. A.
Cina
, “
Time development of geometric phases in the Longuet-Higgins model
,”
J. Chem. Phys.
91
,
6103
6112
(
1989
).
49.
S. K.
Min
,
A.
Abedi
,
K. S.
Kim
, and
E. K. U.
Gross
, “
Is the molecular Berry phase an artifact of the Born–Oppenheimer approximation?
,”
Phys. Rev. Lett.
113
,
263004
(
2014
).
50.
Y.-C.
Shen
and
J. A.
Cina
, “
What can short-pulse pump-probe spectroscopy tell us about Franck-Condon dynamics?
,”
J. Chem. Phys.
110
,
9793
9806
(
1999
).
51.
T. S.
Humble
and
J. A.
Cina
, “
Nonlinear wave-packet interferometry and molecular state reconstruction in a vibrating and rotating diatomic molecule
,”
J. Phys. Chem. B
110
,
18879
18892
(
2006
).
52.
J. A.
Cina
, “
Wave-packet interferometry and molecular state reconstruction: Spectroscopic adventures on the left-hand side of the Schrödinger equation
,”
Annu. Rev. Phys. Chem.
59
,
319
342
(
2008
).
53.
I. G.
Ryabinkin
,
L.
Joubert-Doriol
, and
A. F.
Izmaylov
, “
Geometric phase effects in nonadiabatic dynamics near conical intersections
,”
Acc. Chem. Res.
50
,
1785
1793
(
2017
).
54.
S.
Henshaw
and
A. F.
Izmaylov
, “
Topological origins of bound states in the continuum for systems with conical intersections
,”
J. Phys. Chem. Lett.
9
,
146
149
(
2018
).
55.
L.
Joubert-Doriol
and
A. F.
Izmaylov
, “
Molecular ‘topological insulators’: A case study of electron transfer in the bis(methylene) adamantyl carbocation
,”
Chem. Commun.
53
,
7365
(
2017
).
56.
Conical Intersections: Theory, Computation and Experiment
, edited by
W.
Domcke
,
D. R.
Yarkony
, and
H.
Köppel
(
World Scientific
,
Singapore
,
2011
).
57.
J. A.
Cina
and
V.
Romero‐Rochin
, “
Optical impulsive excitation of molecular pseudorotation in Jahn–Teller systems
,”
J. Chem. Phys.
93
,
3844
3849
(
1990
).
58.
M. M.
Wefers
,
H.
Kawashima
, and
K. A.
Nelson
, “
Optical control over two-dimensional lattice vibrational trajectories in crystalline quartz
,”
J. Chem. Phys.
108
,
10248
10255
(
1998
).
59.
T. J.
Smith
and
J. A.
Cina
, “
Toward preresonant impulsive Raman preparation of large amplitude vibrational motion
,”
J. Chem. Phys.
104
,
1272
1292
(
1996
).
60.
J. A.
Cina
, “
On impulsive excitation of pseudorotation for geometric phase detection
,”
J. Raman Spectrosc.
31
,
95
97
(
2000
).
61.
N.
Makri
, “
Electronic frustration, Berry’s phase interference and slow dynamics in some tight-binding systems coupled to harmonic baths
,”
J. Phys. A: Math. Theor.
56
,
144001
(
2023
).
62.
R.
Dani
and
N.
Makri
, “
Excitation energy transfer in bias-free dendrimers: Eigenstate structure, thermodynamics, and quantum evolution
,”
J. Phys. Chem. C
126
,
10309
10319
(
2022
).
63.
K.
Schwennicke
and
J.
Yuen-Zhou
, “
Optical activity from the exciton Aharonov-Bohm effect: A Floquet engineering approach
,”
J. Phys. Chem. C
124
,
4206
4214
(
2020
).
64.
J.
Whitlow
,
Z.
Jia
,
Y.
Wang
,
C.
Fang
,
J.
Kim
, and
K. R.
Brown
, “
Simulating conical intersections with trapped ions
,” arXiv:2211.07319v2 [quant-ph].
65.
C. H.
Valahu
,
V. C.
Olaya-Agudelo
,
R. J.
MacDonell
,
T.
Navickas
,
A. D.
Rao
,
M. J.
Millican
,
J. B.
Pérez-Sánchez
,
J.
Yuen-Zhou
,
M. J.
Biercuk
,
C.
Hempel
,
T. R.
Tan
, and
I.
Kassal
, “
Direct observation of geometric phase in dynamics around a conical intersection
,” arXiv:2211.07320v2 [quant-ph].
You do not currently have access to this content.