To computationally identify cryptic binding sites for allosteric modulators, we have developed a fast and simple conformational sampling scheme guided by coarse-grained normal modes solved from the elastic network models followed by atomistic backbone and sidechain reconstruction. Despite the complexity of conformational changes associated with ligand binding, we previously showed that simply sampling along each of the lowest 30 modes can adequately restructure cryptic sites so they are detectable by pocket finding programs like Concavity. Here, we applied this method to study four classical examples of allosteric regulation (GluR2 receptor, GroEL chaperonin, GPCR, and myosin). Our method along with alternative methods has been utilized to locate known allosteric sites and predict new promising allosteric sites. Compared with other sampling methods based on extensive molecular dynamics simulation, our method is both faster (1–2 h for an average-size protein of ∼400 residues) and more flexible (it can be easily integrated with any structure-based pocket finding methods), so it is suitable for high-throughput screening of large datasets of protein structures at the genome scale.

1.
J.
Liu
and
R.
Nussinov
,
PLoS Comput. Biol.
12
,
e1004966
(
2016
).
2.
R.
Nussinov
,
C.-J.
Tsai
, and
P.
Csermely
,
Trends Pharmacol. Sci.
32
,
686
(
2011
).
3.
R.
Nussinov
and
C.-J.
Tsai
,
Cell
153
,
293
(
2013
).
4.
J. A.
Hardy
and
J. A.
Wells
,
Curr. Opin. Struct. Biol.
14
,
706
(
2004
).
5.
A.
Kuzmanic
 et al.,
Acc. Chem. Res.
53
,
654
(
2020
).
6.
N. S.
Pagadala
,
K.
Syed
, and
J.
Tuszynski
,
Biophys. Rev.
9
,
91
(
2017
).
7.
P.
Cimermancic
 et al.,
J. Mol. Biol.
428
,
709
(
2016
).
8.
D.
Beglov
 et al.,
Proc. Natl. Acad. Sci. U. S. A.
115
,
E3416
(
2018
).
9.
S.
Vajda
 et al.,
Curr. Opin. Chem. Biol.
44
,
1
(
2018
).
10.
P.
Weinkam
,
J.
Pons
, and
A.
Sali
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
4875
(
2012
).
11.
A. R.
Atilgan
 et al.,
Biophys. J.
80
,
505
(
2001
).
12.
F.
Tama
and
Y.-H.
Sanejouand
,
Protein Eng.
14
,
1
(
2001
).
13.
W.
Zheng
and
S.
Doniach
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
13253
(
2003
).
14.
W. G.
Krebs
 et al.,
Proteins
48
,
682
(
2002
).
15.
A.
Ahmed
,
S.
Villinger
, and
H.
Gohlke
,
Proteins
78
,
3341
(
2010
).
16.
P.
Petrone
and
V. S.
Pande
,
Biophys. J.
90
,
1583
(
2006
).
17.
M.
Dietzen
 et al.,
J. Chem. Inf. Model.
52
,
844
(
2012
).
19.
J. A.
Capra
 et al.,
PLoS Comput. Biol.
5
,
e1000585
(
2009
).
20.
B. T.
Kaynak
,
I.
Bahar
, and
P.
Doruker
,
Comput. Struct. Biotechnol. J.
18
,
1577
(
2020
).
21.
H.
Tian
,
X.
Jiang
, and
P.
Tao
,
Mach. Learn.: Sci Technol.
2
,
035015
(
2021
).
22.
A.
Kumar
,
Predicting Allosteric Pockets in Protein Biological Assemblages
(
Bioinformatics
,
2023
).
23.
K.
Hinsen
 et al.,
Chem. Phys.
261
,
25
(
2000
).
24.
W.
Zheng
and
A.
Auerbach
,
PLoS Comput. Biol.
7
,
e1001046
(
2011
).
25.
W.
Zheng
,
J. Chem. Phys.
136
,
155103
(
2012
).
26.
P.
Rotkiewicz
and
J.
Skolnick
,
J. Comput. Chem.
29
,
1460
(
2008
).
27.
V.
Le Guilloux
,
P.
Schmidtke
, and
P.
Tuffery
,
BMC Bioinform.
10
,
168
(
2009
).
28.
A.
Bakan
,
L. M.
Meireles
, and
I.
Bahar
,
Bioinformatics
27
,
1575
(
2011
).
29.
N.
Armstrong
and
E.
Gouaux
,
Neuron
28
,
165
(
2000
).
30.
H.
Hald
 et al.,
J. Mol. Biol.
391
,
906
(
2009
).
31.
J. S.
Allingham
,
R.
Smith
, and
I.
Rayment
,
Nat. Struct. Mol. Biol.
12
,
378
(
2005
).
32.
C.
Lucas-Lopez
 et al.,
Org. Biomol. Chem.
6
,
2076
(
2008
).
33.
W.
Zheng
and
B.
Brooks
,
J. Mol. Biol.
346
,
745
(
2005
).
34.
W.
Zheng
and
B. R.
Brooks
,
Biophys. J.
89
,
167
(
2005
).
35.
W.
Zheng
,
B. R.
Brooks
, and
D.
Thirumalai
,
Proc. Natl. Acad. Sci. U. S. A.
103
,
7664
(
2006
).
36.
W.
Zheng
,
B.
Brooks
, and
D.
Thirumalai
,
Curr. Protein Pept. Sci.
10
,
128
(
2009
).
37.
K.
Chinthalapudi
 et al.,
J. Biol. Chem.
286
,
29700
(
2011
).
38.
R.
Fedorov
 et al.,
Nat. Struct. Mol. Biol.
16
,
80
(
2009
).
39.
M.
Preller
 et al.,
J. Med. Chem.
54
,
3675
(
2011
).
41.
W.
Zheng
and
H.
Wen
,
Curr. Opin. Struct. Biol.
42
,
24
(
2017
).
42.
W.
Zheng
,
B. R.
Brooks
, and
D.
Thirumalai
,
Biophys. J.
93
,
2289
(
2007
).
43.
J.
Wess
,
R. M.
Eglen
, and
D.
Gautam
,
Nat. Rev. Drug Discovery
6
,
721
(
2007
).
44.
K.
Mohr
,
C.
Tränkle
, and
U.
Holzgrabe
,
Recept. Channels
9
,
229
(
2003
).
45.
46.
A. C.
Kruse
 et al.,
Nature
504
,
101
(
2013
).
You do not currently have access to this content.