A novel local approach for the quantum-chemical computation of excited states is presented, where the concept of the atomic-orbital formulation of the second-order Møller–Plesset energy expression is extended to the second-order algebraic diagrammatic construction scheme by virtue of the Laplace transform. The scaled opposite-spin second-order algebraic diagrammatic construction method with Cholesky decomposed densities and density-fitting, or CDD-DF-SOS-ADC(2) for short, exploits the sparsity of the two-electron repulsion integrals, the atomic ground-state density matrix, and the atomic transition density matrix to drastically reduce the computational effort. By using a local density-fitting approximation, it is shown that asymptotically linear scaling can be achieved for linear carboxylic acids. For electron-dense systems, sub-cubic scaling can be achieved if the excitation is local, and hence the transition density is sparse. Furthermore, the memory footprint and accuracy of the CDD-DF-SOS-ADC(2) method are explored in detail.

1.
J.
Schirmer
, “
Beyond the random-phase approximation: A new approximation scheme for the polarization propagator
,”
Phys. Rev. A
26
,
2395
2416
(
1982
).
2.
J.
Schirmer
and
A. B.
Trofimov
, “
Intermediate state representation approach to physical properties of electronically excited molecules
,”
J. Chem. Phys.
120
,
11449
11464
(
2004
).
3.
A.
Dreuw
and
M.
Wormit
, “
The algebraic diagrammatic construction scheme for the polarization propagator for the calculation of excited states
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
5
,
82
95
(
2015
).
4.
H.
Sekino
and
R. J.
Bartlett
, “
A linear response, coupled-cluster theory for excitation energy
,”
Int. J. Quantum Chem.
26
,
255
265
(
1984
).
5.
H.
Koch
and
P.
Jørgensen
, “
Coupled cluster response functions
,”
J. Chem. Phys.
93
,
3333
3344
(
1990
).
6.
H.
Koch
,
H. J. A.
Jensen
,
P.
Jørgensen
, and
T.
Helgaker
, “
Excitation energies from the coupled cluster singles and doubles linear response function (CCSDLR). Applications to Be, CH+, CO, and H2O
,”
J. Chem. Phys.
93
,
3345
3350
(
1990
).
7.
K.
Sneskov
and
O.
Christiansen
, “
Excited state coupled cluster methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
566
584
(
2012
).
8.
J.
Geertsen
,
M.
Rittby
, and
R. J.
Bartlett
, “
The equation-of-motion coupled-cluster method: Excitation energies of Be and CO
,”
Chem. Phys. Lett.
164
,
57
62
(
1989
).
9.
K.
Emrich
, “
An extension of the coupled cluster formalism to excited states (I)
,”
Nucl. Phys. A
351
,
379
396
(
1981
).
10.
J. F.
Stanton
and
R. J.
Bartlett
, “
The equation of motion coupled-cluster method. A systematic biorthogonal approach to molecular excitation energies, transition probabilities, and excited state properties
,”
J. Chem. Phys.
98
,
7029
7039
(
1993
).
11.
J. F.
Stanton
and
J.
Gauss
, “
Analytic energy derivatives for ionized states described by the equation-of-motion coupled cluster method
,”
J. Chem. Phys.
101
,
8938
8944
(
1994
).
12.
A. I.
Krylov
, “
Equation-of-motion coupled-cluster methods for open-shell and electronically excited species: The Hitchhiker’s guide to Fock space
,”
Annu. Rev. Phys. Chem.
59
,
433
462
(
2008
).
13.
R. J.
Bartlett
, “
Coupled-cluster theory and its equation-of-motion extensions
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
126
138
(
2012
).
14.
O.
Christiansen
,
H.
Koch
, and
P.
Jørgensen
, “
The second-order approximate coupled cluster singles and doubles model CC2
,”
Chem. Phys. Lett.
243
,
409
418
(
1995
).
15.
P.
Pulay
, “
Localizability of dynamic electron correlation
,”
Chem. Phys. Lett.
100
,
151
154
(
1983
).
16.
S.
Sæbø
and
P.
Pulay
, “
Local configuration interaction: An efficient approach for larger molecules
,”
Chem. Phys. Lett.
113
,
13
18
(
1985
).
17.
S.
Saebo
and
P.
Pulay
, “
Local treatment of electron correlation
,”
Annu. Rev. Phys. Chem.
44
,
213
236
(
1993
).
18.
M.
Schütz
,
G.
Hetzer
, and
H.-J.
Werner
, “
Low-order scaling local electron correlation methods. I. Linear scaling local MP2
,”
J. Chem. Phys.
111
,
5691
5705
(
1999
).
19.
M.
Schütz
and
H.-J.
Werner
, “
Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD)
,”
J. Chem. Phys.
114
,
661
681
(
2001
).
20.
T. D.
Crawford
and
R. A.
King
, “
Locally correlated equation-of-motion coupled cluster theory for the excited states of large molecules
,”
Chem. Phys. Lett.
366
,
611
622
(
2002
).
21.
T.
Korona
and
H.-J.
Werner
, “
Local treatment of electron excitations in the EOM-CCSD method
,”
J. Chem. Phys.
118
,
3006
3019
(
2003
).
22.
D.
Kats
,
T.
Korona
, and
M.
Schütz
, “
Local CC2 electronic excitation energies for large molecules with density fitting
,”
J. Chem. Phys.
125
,
104106
(
2006
).
23.
D.
Kats
and
M.
Schütz
, “
A multistate local coupled cluster CC2 response method based on the Laplace transform
,”
J. Chem. Phys.
131
,
124117
(
2009
).
24.
A. G.
Taube
and
R. J.
Bartlett
, “
Frozen natural orbital coupled-cluster theory: Forces and application to decomposition of nitroethane
,”
J. Chem. Phys.
128
,
164101
(
2008
).
25.
P. R.
Nagy
,
G.
Samu
, and
M.
Kállay
, “
Optimization of the linear-scaling local natural orbital CCSD(T) method: Improved algorithm and benchmark applications
,”
J. Chem. Theory Comput.
14
,
4193
4215
(
2018
).
26.
Z.
Rolik
,
L.
Szegedy
,
I.
Ladjánszki
,
B.
Ladóczki
, and
M.
Kállay
, “
An efficient linear-scaling CCSD(T) method based on local natural orbitals
,”
J. Chem. Phys.
139
,
094105
(
2013
).
27.
C.
Edmiston
and
M.
Krauss
, “
Configuration-interaction calculation of H3 and H2
,”
J. Chem. Phys.
42
,
1119
1120
(
1965
).
28.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
, “
Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis
,”
J. Chem. Phys.
131
,
064103
(
2009
).
29.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
, “
Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method
,”
J. Chem. Phys.
130
,
114108
(
2009
).
30.
A.
Hansen
,
D. G.
Liakos
, and
F.
Neese
, “
Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals
,”
J. Chem. Phys.
135
,
214102
(
2011
).
31.
M.
Head-Gordon
,
R. J.
Rico
,
M.
Oumi
, and
T. J.
Lee
, “
A doubles correction to electronic excited states from configuration interaction in the space of single substitutions
,”
Chem. Phys. Lett.
219
,
21
29
(
1994
).
32.
D.
Mester
,
P. R.
Nagy
, and
M.
Kállay
, “
Reduced-cost linear-response CC2 method based on natural orbitals and natural auxiliary functions
,”
J. Chem. Phys.
146
,
194102
(
2017
).
33.
D.
Mester
,
P. R.
Nagy
, and
M.
Kállay
, “
Reduced-cost second-order algebraic-diagrammatic construction method for excitation energies and transition moments
,”
J. Chem. Phys.
148
,
094111
(
2018
).
34.
D.
Mester
,
P. R.
Nagy
, and
M.
Kállay
, “
Reduced-scaling correlation methods for the excited states of large molecules: Implementation and benchmarks for the second-order algebraic-diagrammatic construction approach
,”
J. Chem. Theory Comput.
15
,
6111
6126
(
2019
).
35.
P.
Baudin
and
K.
Kristensen
, “
LoFEx—A local framework for calculating excitation energies: Illustrations using RI-CC2 linear response theory
,”
J. Chem. Phys.
144
,
224106
(
2016
).
36.
P.
Baudin
and
K.
Kristensen
, “
Correlated natural transition orbital framework for low-scaling excitation energy calculations (CorNFLEx)
,”
J. Chem. Phys.
146
,
214114
(
2017
).
37.
M.
Häser
and
J.
Almlöf
, “
Laplace transform techniques in Møller–Plesset perturbation theory
,”
J. Chem. Phys.
96
,
489
494
(
1992
).
38.
A.
Takatsuka
,
S.
Ten-no
, and
W.
Hackbusch
, “
Minimax approximation for the decomposition of energy denominators in Laplace-transformed Møller–Plesset perturbation theories
,”
J. Chem. Phys.
129
,
044112
(
2008
).
39.
B.
Helmich-Paris
and
L.
Visscher
, “
Improvements on the minimax algorithm for the Laplace transformation of orbital energy denominators
,”
J. Comput. Phys.
321
,
927
931
(
2016
).
40.
J. L.
Whitten
, “
Coulombic potential energy integrals and approximations
,”
J. Chem. Phys.
58
,
4496
4501
(
1973
).
41.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
, “
Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure
,”
Chem. Phys.
2
,
41
51
(
1973
).
42.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
, “
Integral approximations for LCAO-SCF calculations
,”
Chem. Phys. Lett.
213
,
514
518
(
1993
).
43.
C.-K.
Skylaris
,
L.
Gagliardi
,
N. C.
Handy
,
A. G.
Ioannou
,
S.
Spencer
, and
A.
Willetts
, “
On the resolution of identity Coulomb energy approximation in density functional theory
,”
J. Mol. Struct.: THEOCHEM
501–502
,
229
239
(
2000
).
44.
Y.
Jung
,
R. C.
Lochan
,
A. D.
Dutoi
, and
M.
Head-Gordon
, “
Scaled opposite-spin second order Møller–Plesset correlation energy: An economical electronic structure method
,”
J. Chem. Phys.
121
,
9793
9802
(
2004
).
45.
N. O. C.
Winter
and
C.
Hättig
, “
Scaled opposite-spin CC2 for ground and excited states with fourth order scaling computational costs
,”
J. Chem. Phys.
134
,
184101
(
2011
).
46.
C. M.
Krauter
,
M.
Pernpointner
, and
A.
Dreuw
, “
Application of the scaled-opposite-spin approximation to algebraic diagrammatic construction schemes of second order
,”
J. Chem. Phys.
138
,
044107
(
2013
).
47.
F.
Sacchetta
,
D.
Graf
,
H.
Laqua
,
M. A.
Ambroise
,
J.
Kussmann
,
A.
Dreuw
, and
C.
Ochsenfeld
, “
An effective sub-quadratic scaling atomic-orbital reformulation of the scaled opposite-spin RI-CC2 ground-state model using Cholesky-decomposed densities and an attenuated Coulomb metric
,”
J. Chem. Phys.
157
,
104104
(
2022
).
48.
F.
Aquilante
,
T. B.
Pedersen
,
A.
Sánchez de Merás
, and
H.
Koch
, “
Fast noniterative orbital localization for large molecules
,”
J. Chem. Phys.
125
,
174101
(
2006
).
49.
Y.
Jung
,
A.
Sodt
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Auxiliary basis expansions for large-scale electronic structure calculations
,”
Proc. Natl. Acad. Sci. U. S. A.
102
,
6692
6697
(
2005
).
50.
D. P.
Tew
, “
Communication: Quasi-robust local density fitting
,”
J. Chem. Phys.
148
,
011102
(
2018
).
51.
S. A.
Maurer
,
L.
Clin
, and
C.
Ochsenfeld
, “
Cholesky-decomposed density MP2 with density fitting: Accurate MP2 and double-hybrid DFT energies for large systems
,”
J. Chem. Phys.
140
,
224112
(
2014
).
52.
M.
Glasbrenner
,
D.
Graf
, and
C.
Ochsenfeld
, “
Efficient reduced-scaling second-order Møller–Plesset perturbation theory with Cholesky-decomposed densities and an attenuated Coulomb metric
,”
J. Chem. Theory Comput.
16
,
6856
6868
(
2020
).
53.
J.
Zienau
,
L.
Clin
,
B.
Doser
, and
C.
Ochsenfeld
, “
Cholesky-decomposed densities in Laplace-based second-order Møller–Plesset Perturbation theory
,”
J. Chem. Phys.
130
,
204112
(
2009
).
54.
E. R.
Davidson
, “
The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices
,”
J. Comput. Phys.
17
,
87
94
(
1975
).
55.
A. B.
Trofimov
and
J.
Schirmer
, “
An efficient polarization propagator approach to valence electron excitation spectra
,”
J. Phys. B: At., Mol. Opt. Phys.
28
,
2299
2324
(
1995
).
56.
A. B.
Trofimov
,
G.
Stelter
, and
J.
Schirmer
, “
A consistent third-order propagator method for electronic excitation
,”
J. Chem. Phys.
111
,
9982
9999
(
1999
).
57.
P. H. P.
Harbach
,
M.
Wormit
, and
A.
Dreuw
, “
The third-order algebraic diagrammatic construction method (ADC(3)) for the polarization propagator for closed-shell molecules: Efficient implementation and benchmarking
,”
J. Chem. Phys.
141
,
064113
(
2014
).
58.
S.
Grimme
, “
Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies
,”
J. Chem. Phys.
118
,
9095
9102
(
2003
).
59.
A.
Hellweg
,
S. A.
Grün
, and
C.
Hättig
, “
Benchmarking the performance of spin-component scaled CC2 in ground and electronically excited states
,”
Phys. Chem. Chem. Phys.
10
,
4119
4127
(
2008
).
60.
H.-J.
Werner
,
F. R.
Manby
, and
P. J.
Knowles
, “
Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations
,”
J. Chem. Phys.
118
,
8149
8160
(
2003
).
61.
H.
Koch
,
A.
Sánchez de Merás
, and
T. B.
Pedersen
, “
Reduced scaling in electronic structure calculations using Cholesky decompositions
,”
J. Chem. Phys.
118
,
9481
(
2003
).
62.
A.
Luenser
,
H. F.
Schurkus
, and
C.
Ochsenfeld
, “
Vanishing-overhead linear-scaling random phase approximation by Cholesky decomposition and an attenuated coulomb-metric
,”
J. Chem. Theory Comput.
13
,
1647
1655
(
2017
).
63.
S. A.
Maurer
,
J.
Kussmann
, and
C.
Ochsenfeld
, “
Communication: A reduced scaling J-engine based reformulation of SOS-MP2 using graphics processing units
,”
J. Chem. Phys.
141
,
051106
(
2014
).
64.
N. J.
Higham
, “
Cholesky factorization
,”
Wiley Interdiscip. Rev.: Comput. Stat.
1
,
251
254
(
2009
).
65.
H.
Harbrecht
,
M.
Peters
, and
R.
Schneider
, “
On the low-rank approximation by the pivoted Cholesky decomposition
,”
Appl. Numer. Math.
62
,
428
440
(
2012
).
66.
P.
Pulay
, “
Convergence acceleration of iterative sequences. The case of SCF iteration
,”
Chem. Phys. Lett.
73
,
393
398
(
1980
).
67.
Q.
Sun
, “
Libcint: An efficient general integral library for Gaussian basis functions
,”
J. Comput. Chem.
36
,
1664
1671
(
2015
).
68.
G.
Guennebaud
,
B.
Jacob
 et al., “
Eigen v3
,” http://eigen.tuxfamily.org,
2010
.
69.
U.
Borštnik
,
J.
VandeVondele
,
V.
Weber
, and
J.
Hutter
, “
Sparse matrix multiplication: The distributed block-compressed sparse row library
,”
Parallel Comput.
40
,
47
58
(
2014
).
70.
TCD Group
, DBCSR: Distributed Block Compressed Sparse Row matrix library,
2020
.
71.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
72.
Y.
Shao
,
Z.
Gan
,
E.
Epifanovsky
,
A. T. B.
Gilbert
,
M.
Wormit
,
J.
Kussmann
,
A. W.
Lange
,
A.
Behn
,
J.
Deng
,
X.
Feng
,
D.
Ghosh
,
M.
Goldey
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
R. Z.
Khaliullin
,
T.
Kuś
,
A.
Landau
,
J.
Liu
,
E. I.
Proynov
,
Y. M.
Rhee
,
R. M.
Richard
,
M. A.
Rohrdanz
,
R. P.
Steele
,
E. J.
Sundstrom
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
D.
Zuev
,
B.
Albrecht
,
E.
Alguire
,
B.
Austin
,
G. J. O.
Beran
,
Y. A.
Bernard
,
E.
Berquist
,
K.
Brandhorst
,
K. B.
Bravaya
,
S. T.
Brown
,
D.
Casanova
,
C.-M.
Chang
,
Y.
Chen
,
S. H.
Chien
,
K. D.
Closser
,
D. L.
Crittenden
,
M.
Diedenhofen
,
R. A.
DiStasio
,
H.
Do
,
A. D.
Dutoi
,
R. G.
Edgar
,
S.
Fatehi
,
L.
Fusti-Molnar
,
A.
Ghysels
,
A.
Golubeva-Zadorozhnaya
,
J.
Gomes
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A. W.
Hauser
,
E. G.
Hohenstein
,
Z. C.
Holden
,
T.-C.
Jagau
,
H.
Ji
,
B.
Kaduk
,
K.
Khistyaev
,
J.
Kim
,
J.
Kim
,
R. A.
King
,
P.
Klunzinger
,
D.
Kosenkov
,
T.
Kowalczyk
,
C. M.
Krauter
,
K. U.
Lao
,
A. D.
Laurent
,
K. V.
Lawler
,
S. V.
Levchenko
,
C. Y.
Lin
,
F.
Liu
,
E.
Livshits
,
R. C.
Lochan
,
A.
Luenser
,
P.
Manohar
,
S. F.
Manzer
,
S.-P.
Mao
,
N.
Mardirossian
,
A. V.
Marenich
,
S. A.
Maurer
,
N. J.
Mayhall
,
E.
Neuscamman
,
C. M.
Oana
,
R.
Olivares-Amaya
,
D. P.
O’Neill
,
J. A.
Parkhill
,
T. M.
Perrine
,
R.
Peverati
,
A.
Prociuk
,
D. R.
Rehn
,
E.
Rosta
,
N. J.
Russ
,
S. M.
Sharada
,
S.
Sharma
,
D. W.
Small
,
A.
Sodt
,
T.
Stein
,
D.
Stück
,
Y.-C.
Su
,
A. J. W.
Thom
,
T.
Tsuchimochi
,
V.
Vanovschi
,
L.
Vogt
,
O.
Vydrov
,
T.
Wang
,
M. A.
Watson
,
J.
Wenzel
,
A.
White
,
C. F.
Williams
,
J.
Yang
,
S.
Yeganeh
,
S. R.
Yost
,
Z.-Q.
You
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhao
,
B. R.
Brooks
,
G. K. L.
Chan
,
D. M.
Chipman
,
C. J.
Cramer
,
W. A.
Goddard
,
M. S.
Gordon
,
W. J.
Hehre
,
A.
Klamt
,
H. F.
Schaefer
,
M. W.
Schmidt
,
C. D.
Sherrill
,
D. G.
Truhlar
,
A.
Warshel
,
X.
Xu
,
A.
Aspuru-Guzik
,
R.
Baer
,
A. T.
Bell
,
N. A.
Besley
,
J.-D.
Chai
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
S. R.
Gwaltney
,
C.-P.
Hsu
,
Y.
Jung
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
C.
Ochsenfeld
,
V. A.
Rassolov
,
L. V.
Slipchenko
,
J. E.
Subotnik
,
T.
Van Voorhis
,
J. M.
Herbert
,
A. I.
Krylov
,
P. M. W.
Gill
, and
M.
Head-Gordon
, “
Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
,”
Mol. Phys.
113
,
184
215
(
2015
).
73.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
, “
Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions
,”
J. Chem. Phys.
96
,
6796
6806
(
1992
).
74.
F.
Weigend
, “
A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency
,”
Phys. Chem. Chem. Phys.
4
,
4285
4291
(
2002
).
75.
F.
Weigend
,
A.
Köhn
, and
C.
Hättig
, “
Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations
,”
J. Chem. Phys.
116
,
3175
3183
(
2002
).
76.
D.
Kats
,
T.
Korona
, and
M.
Schütz
, “
Transition strengths and first-order properties of excited states from local coupled cluster CC2 response theory with density fitting
,”
J. Chem. Phys.
127
,
064107
(
2007
).
77.
F.
Aquilante
,
L.
Boman
,
J.
Boström
,
H.
Koch
,
R.
Lindh
,
A. S.
de Merás
, and
T. B.
Pedersen
, “
Cholesky decomposition techniques in electronic structure theory
, ” in
Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications
(
Springer
,
2011
), pp.
301
343
.
78.
N. H. F.
Beebe
and
J.
Linderberg
, “
Simplifications in the generation and transformation of two-electron integrals in molecular calculations
,”
Int. J. Quantum Chem.
12
,
683
705
(
1977
).
79.
S.
Lehtola
, “
Curing basis set overcompleteness with pivoted Cholesky decompositions
,”
J. Chem. Phys.
151
,
241102
(
2019
).

Supplementary Material

You do not currently have access to this content.