Existing semiempirical molecular orbital methods suffer from the usually minimal atomic-orbital (AO) basis set used to simplify the calculations. Here, a completely new and consistently parameterized tight-binding electronic structure Hamiltonian evaluated in a deeply contracted, properly polarized valence double-zeta basis set (vDZP) is described. The inner-shell electrons are accounted for by standard, large-core effective potentials and approximations to them. The primary target of this so-called density matrix tight-binding method is to reproduce the one-particle density matrix P of a molecular ωB97X-V range-separated hybrid density functional theory (DFT) calculation in exactly the same basis set. Additional properties considered are orbital energies, dipole polarizabilities and dipole moments, and dipole polarizability derivatives. The key features of the method are as follows: (a) it is non-self-consistent with an overall fixed number of only three required matrix diagonalizations; (b) only AO overlap integrals are needed to construct the effective Hamiltonian matrix; (c) new P-dependent terms emulating non-local exchange are included; and (d) only element-specific empirical parameters (about 50 per element) need to be determined. The method globally achieves a high accuracy for the target properties at a speedup compared to the ωB97X-V/vDZP reference of about 3–4 orders of magnitude. It performs robustly for difficult transition metal complexes, for highly charged or zwitterionic systems, and for chemically unusual bonding situations, indicating a generally robust approximation of the (self-consistent) Kohn–Sham potential. As an example application, the vibrational Raman spectrum of an entire protein with 327 atoms with respect to the DFT reference calculation is shown. This method may be used out-of-the-box to generate molecular/atomic features for machine learning applications or as the basis for accurate high-speed DFT methods.

1.
A. M.
Teale
,
T.
Helgaker
,
A.
Savin
,
C.
Adano
,
B.
Aradi
,
A. V.
Arbuznikov
,
P. W.
Ayers
,
E. J.
Baerends
,
V.
Barone
,
P.
Calaminici
,
E.
Cances
,
E. A.
Carter
,
P. K.
Chattaraj
,
H.
Chermette
,
I.
Ciofini
,
T. D.
Crawford
,
F.
De Proft
,
J. F.
Dobson
,
C.
Draxl
,
T.
Frauenheim
,
E.
Fromager
,
P.
Fuentealba
,
L.
Gagliardi
,
G.
Galli
,
J.
Gao
,
P.
Geerlings
,
N.
Gidopoulos
,
P. M. W.
Gill
,
P.
Gori-Giorgi
,
A.
Görling
,
T.
Gould
,
S.
Grimme
,
O.
Gritsenko
,
H. J. A.
Jensen
,
E. R.
Johnson
,
R. O.
Jones
,
M.
Kaupp
,
A. M.
Koster
,
L.
Kronik
,
A. I.
Krylov
,
S.
Kvaal
,
A.
Laestadius
,
M. P.
Levy
,
M.
Lewin
,
S.
Liu
,
P.-F.
Loos
,
N. T.
Maitra
,
F.
Neese
,
J.
Perdew
,
K.
Pernal
,
P.
Pernot
,
P.
Piecuch
,
E.
Rebolini
,
L.
Reining
,
P.
Romaniello
,
A.
Ruzsinszky
,
D.
Salahub
,
M.
Scheffler
,
P.
Schwerdtfeger
,
V. N.
Staroverov
,
J.
Sun
,
E.
Tellgren
,
D. J.
Tozer
,
S. B.
Trickey
,
C. A.
Ullrich
,
A.
Vela
,
G.
Vignale
,
T. A.
Wesolowski
,
X.
Xu
, and
W.
Yang
,
Phys. Chem. Chem. Phys.
24
,
28700
(
2022
).
2.
Y.-q.
Chen
,
Y.-j.
Sheng
,
Y.-q.
Ma
, and
H.-m.
Ding
,
Phys. Chem. Chem. Phys.
24
,
14339
(
2022
).
3.
S.
Spicher
,
M.
Bursch
, and
S.
Grimme
,
J. Phys. Chem. C
124
,
27529
(
2020
).
4.
S.
Grimme
,
F.
Bohle
,
A.
Hansen
,
P.
Pracht
,
S.
Spicher
, and
M.
Stahn
,
J. Phys. Chem. A
125
,
4039
(
2021
).
5.
T.
Gensch
,
G.
Dos Passos Gomes
,
P.
Friederich
,
E.
Peters
,
T.
Gaudin
,
R.
Pollice
,
K.
Jorner
,
A.
Nigam
,
M.
Lindner-D’Addario
,
M. S.
Sigman
, and
A.
Aspuru-Guzik
,
J. Am. Chem. Soc.
144
,
1205
(
2022
).
6.
J. P.
Unsleber
,
S. A.
Grimmel
, and
M.
Reiher
,
J. Chem. Theory Comput.
18
,
5393
(
2022
).
7.
J. G.
Brandenburg
,
C.
Bannwarth
,
A.
Hansen
, and
S.
Grimme
,
J. Chem. Phys.
148
,
064104
(
2018
).
8.
S.
Grimme
,
A.
Hansen
,
S.
Ehlert
, and
J. M.
Mewes
,
J. Chem. Phys.
154
,
064103
(
2021
).
9.
J.
Witte
,
J. B.
Neaton
, and
M.
Head-Gordon
,
J. Chem. Phys.
146
,
234105
(
2017
).
10.
W.
Thiel
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
145
(
2014
).
11.
N. D.
Yilmazer
and
M.
Korth
,
Computat. Struct. Biotechnol. J.
13
,
169
(
2015
).
12.
A. S.
Christensen
,
T.
Kubař
,
Q.
Cui
, and
M.
Elstner
,
Chem. Rev.
116
,
5301
(
2016
).
13.
P.
Zheng
,
R.
Zubatyuk
,
W.
Wu
,
O.
Isayev
, and
P. O.
Dral
,
Nat. Commun.
12
,
7022
(
2021
).
14.
F. P.
Bonafé
,
B.
Aradi
,
B.
Hourahine
,
C. R.
Medrano
,
F. J.
Hernández
,
T.
Frauenheim
, and
C. G.
Sánchez
,
J. Chem. Theory Comput.
16
,
4454
(
2020
).
15.
J. C.
Kromann
,
J. H.
Jensen
,
M.
Kruszyk
,
M.
Jessing
, and
M.
Jørgensen
,
Chem. Sci.
9
,
660
(
2018
).
16.
J.
Murillo-López
,
K.
Zinovjev
,
H.
Pereira
,
A.
Caniuguir
,
R.
Garratt
,
J.
Babul
,
R.
Recabarren
,
J.
Alzate-Morales
,
J.
Caballero
,
I.
Tuñón
, and
R.
Cabrera
,
Chem. Sci.
10
,
2882
(
2019
).
17.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev. B
58
,
7260
(
1998
).
18.
Y.
Yang
,
H.
Yu
,
D.
York
,
Q.
Cui
, and
M.
Elstner
,
J. Phys. Chem. A
111
,
10861
(
2007
).
19.
M.
Gaus
,
Q.
Cui
, and
M.
Elstner
,
J. Chem. Theory Comput.
7
,
931
(
2011
).
20.
T.
Frauenheim
,
G.
Seifert
,
M.
Elstner
,
T.
Niehaus
,
C.
Köhler
,
M.
Amkreutz
,
M.
Sternberg
,
Z.
Hajnal
,
A. D.
Carlo
, and
S.
Suhai
,
J. Phys.: Condens. Matter
14
,
3015
(
2002
).
21.
Q.
Cui
,
M.
Elstner
,
E.
Kaxiras
,
T.
Frauenheim
, and
M.
Karplus
,
J. Phys. Chem. B
105
,
569
(
2001
).
22.
T. A.
Niehaus
,
S.
Suhai
,
F.
Della Sala
,
M.
Elstner
,
G.
Seifert
, and
T.
Frauenheim
,
Phys. Rev. B
63
,
085108
(
2001
).
23.
S.
Grimme
,
C.
Bannwarth
, and
P.
Shushkov
,
J. Chem. Theory Comput.
13
,
1989
(
2017
).
24.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
,
J. Chem. Theory Comput.
15
,
1652
(
2019
).
25.
P.
Pracht
,
E.
Caldeweyher
,
S.
Ehlert
, and
S.
Grimme
, ChemRxiv:10.26434/chemrxiv.8326202.v1 (
2019
).
26.
S.
Spicher
and
S.
Grimme
,
Angew. Chem.
132
,
15795
(
2020
).
27.
C.
Bannwarth
,
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
P.
Pracht
,
J.
Seibert
,
S.
Spicher
, and
S.
Grimme
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1493
(
2021
).
28.
A. H.
Abazid
and
B. J.
Nachtsheim
,
Angew. Chem., Int. Ed.
59
,
1479
(
2020
).
29.
D.
Lemm
,
G. F.
Von Rudorff
, and
O. A.
Von Lilienfeld
,
Nat. Commun.
12
,
4468
(
2021
).
30.
J.
Zhang
and
T.
Lu
,
Phys. Chem. Chem. Phys.
23
,
20323
(
2021
).
31.
R.
Schade
,
T.
Kenter
,
H.
Elgabarty
,
M.
Lass
,
O.
Schütt
,
A.
Lazzaro
,
H.
Pabst
,
S.
Mohr
,
J.
Hutter
,
T. D.
Kühne
, and
C.
Plessl
,
Parallel Comput.
111
,
102920
(
2022
).
32.
D. B.
Diaz
,
S. D.
Appavoo
,
A. F.
Bogdanchikova
,
Y.
Lebedev
,
T. J.
Mctiernan
,
G.
Dos Passos Gomes
, and
A. K.
Yudin
,
Nat. Chem.
13
,
218
(
2021
).
33.
P.
Zheng
,
W.
Yang
,
W.
Wu
,
O.
Isayev
, and
P. O.
Dral
,
J. Phys. Chem. Lett.
13
,
3479
(
2022
).
34.
Z.
Qiao
,
M.
Welborn
,
A.
Anandkumar
,
F. R.
Manby
, and
T. F.
Miller
,
J. Chem. Phys.
153
,
124111
(
2020
).
35.
V.
Sinha
,
J. J.
Laan
, and
E. A.
Pidko
,
Phys. Chem. Chem. Phys.
23
,
2557
(
2021
).
36.
O. D.
Abarbanel
and
G. R.
Hutchison
,
J. Chem. Phys.
155
,
054106
(
2021
).
37.
M.
Bursch
,
A.
Hansen
,
P.
Pracht
,
J. T.
Kohn
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
23
,
287
(
2021
).
38.
S.
Dohm
,
M.
Bursch
,
A.
Hansen
, and
S.
Grimme
,
J. Chem. Theory Comput.
16
,
2002
(
2020
).
39.
P.
Pracht
,
D. F.
Grant
, and
S.
Grimme
,
J. Chem. Theory Comput.
16
,
7044
(
2020
).
40.
M.
Fanti
,
G.
Orlandi
, and
F.
Zerbetto
,
J. Phys. B: At., Mol. Opt. Phys.
29
,
5065
(
1996
).
41.
S.
Kaminski
,
T. J.
Giese
,
M.
Gaus
,
D. M.
York
, and
M.
Elstner
,
J. Phys. Chem. A
116
,
9131
(
2012
).
42.
M.
Müller
,
A.
Hansen
, and
S.
Grimme
,
J. Chem. Phys.
158
,
014103
(
2023
).
43.
Y.-S.
Lin
,
G.-D.
Li
,
S.-P.
Mao
, and
J.-D.
Chai
,
J. Chem. Theory Comput.
9
,
263
(
2013
).
44.
A.
Bergner
,
M.
Dolg
,
W.
Küchle
,
H.
Stoll
, and
H.
Preuss
,
Mol. Phys.
80
,
1431
(
1993
).
45.
T.
Leininger
,
A.
Berning
,
A.
Nicklass
,
H.
Stoll
,
H.-J.
Werner
, and
H.-J.
Flad
,
Chem. Phys.
217
,
19
(
1997
).
46.
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
90
,
1730
(
1989
).
47.
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
Theor. Chim. Acta
85
,
441
(
1993
).
48.
D.
Andrae
,
U.
Häussermann
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
Theor. Chim. Acta
77
,
123
(
1990
).
49.
W.
Küchle
,
M.
Dolg
,
H.
Stoll
, and
H.
Preuss
,
Mol. Phys.
74
,
1245
(
1991
).
50.
M.
Dolg
,
U.
Wedig
,
H.
Stoll
, and
H.
Preuss
,
J. Chem. Phys.
86
,
866
(
1987
).
51.
L.
Fernandez Pacios
and
P. A.
Christiansen
,
J. Chem. Phys.
82
,
2664
(
1985
).
52.
M. M.
Hurley
,
L. F.
Pacios
,
P. A.
Christiansen
,
R. B.
Ross
, and
W. C.
Ermler
,
J. Chem. Phys.
84
,
6840
(
1986
).
53.
L. A.
Lajohn
,
P. A.
Christiansen
,
R. B.
Ross
,
T.
Atashroo
, and
W. C.
Ermler
,
J. Chem. Phys.
87
,
2812
(
1987
).
54.
R. B.
Ross
,
J. M.
Powers
,
T.
Atashroo
,
W. C.
Ermler
,
L. A.
Lajohn
, and
P. A.
Christiansen
,
J. Chem. Phys.
93
,
6654
(
1990
).
55.
T. R.
Cundari
and
W. J.
Stevens
,
J. Chem. Phys.
98
,
5555
(
1993
).
56.
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
H.
Neugebauer
,
S.
Spicher
,
C.
Bannwarth
, and
S.
Grimme
,
J. Chem. Phys.
150
,
154122
(
2019
).
57.
N.
Mardirossian
and
M.
Head-Gordon
,
Phys. Chem. Chem. Phys.
16
,
9904
(
2014
).
58.
O. A.
Vydrov
and
T.
Van Voorhis
,
J. Chem. Phys.
133
,
244103
(
2010
).
59.
S.
Grimme
,
W.
Hujo
, and
B.
Kirchner
,
Phys. Chem. Chem. Phys.
14
,
4875
(
2012
).
60.
S.
Vuckovic
,
S.
Song
,
J.
Kozlowski
,
E.
Sim
, and
K.
Burke
,
J. Chem. Theory Comput.
15
,
6636
(
2019
).
61.
W. J.
Mortier
,
S. K.
Ghosh
, and
S.
Shankar
,
J. Am. Chem. Soc.
108
,
4315
(
1986
).
62.
A. K.
Rappé
and
W. A.
Goddard
,
J. Phys. Chem.
95
,
3358
(
1991
).
63.
S. A.
Ghasemi
,
A.
Hofstetter
,
S.
Saha
, and
S.
Goedecker
,
Phys. Rev. B
92
,
045131
(
2015
).
64.
S.
Grimme
and
C.
Bannwarth
,
J. Chem. Phys.
145
,
054103
(
2016
).
65.
V. I.
Anisimov
,
J.
Zaanen
, and
O. K.
Andersen
,
Phys. Rev. B
44
,
943
(
1991
).
66.
B.
Himmetoglu
,
A.
Floris
,
S.
De Gironcoli
, and
M.
Cococcioni
,
Int. J. Quantum Chem.
114
,
14
(
2014
).
67.
H. J.
Kulik
,
J. Chem. Phys.
142
,
240901
(
2015
).
68.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
69.
M.
Scholz
and
H.-J.
Koehler
,
Band 3: Quantenchemische Näherungsverfahren und ihre Anwendung in der organischen Chemie
, 3rd ed. (
Hüthig
,
1981
).
70.
L. R.
Kahn
and
W. A.
Goddard
,
J. Chem. Phys.
56
,
2702
(
1972
).
71.
P.
Durand
and
J.-C.
Barthelat
,
Theor. Chim. Acta
38
,
283
(
1975
).
72.
R. F.
Stewart
,
J. Chem. Phys.
52
,
431
(
1970
).
73.
E.
Clementi
and
D. L.
Raimondi
,
J. Chem. Phys.
38
,
2686
(
1963
).
74.
E.
Clementi
,
D. L.
Raimondi
, and
W. P.
Reinhardt
,
J. Chem. Phys.
47
,
1300
(
1967
).
75.
S.
Grimme
,
J. Chem. Phys.
138
,
244104
(
2013
).
76.
M.
Korth
and
S.
Grimme
,
J. Chem. Theory Comput.
5
,
993
(
2009
).
77.
D. W.
Marquardt
,
J. Soc. Ind. Appl. Math.
11
,
431
(
1963
).
78.
M. J. D.
Powell
,
Comput. J.
7
,
155
(
1964
).
79.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
,
Phys. Rev. B
59
,
7413
(
1999
).
80.
S. G.
Balasubramani
,
G. P.
Chen
,
S.
Coriani
,
M.
Diedenhofen
,
M. S.
Frank
,
Y. J.
Franzke
,
F.
Furche
,
R.
Grotjahn
,
M. E.
Harding
,
C.
Hättig
,
A.
Hellweg
,
B.
Helmich-Paris
,
C.
Holzer
,
U.
Huniar
,
M.
Kaupp
,
A.
Marefat Khah
,
S.
Karbalaei Khani
,
T.
Müller
,
F.
Mack
,
B. D.
Nguyen
,
S. M.
Parker
,
E.
Perlt
,
D.
Rappoport
,
K.
Reiter
,
S.
Roy
,
M.
Rückert
,
G.
Schmitz
,
M.
Sierka
,
E.
Tapavicza
,
D. P.
Tew
,
C.
Van Wüllen
,
V. K.
Voora
,
F.
Weigend
,
A.
Wodyński
, and
J. M.
Yu
,
J. Chem. Phys.
152
,
184107
(
2020
).
81.
TURBOMOLE V7.6, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2022, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com,
2022
.
82.
P.
Plessow
and
F.
Weigend
,
J. Comput. Chem.
33
,
810
(
2012
).
83.
C.
Holzer
,
J. Chem. Phys.
153
,
184115
(
2020
).
84.
See https://github.com/grimme-lab/xtb for GRIMME GROUP,
2022
.
85.
L. R.
Maurer
,
M.
Bursch
,
S.
Grimme
, and
A.
Hansen
,
J. Chem. Theory Comput.
17
,
6134
(
2021
).
86.
J.
Westermayr
,
M.
Gastegger
,
K. T.
Schütt
, and
R. J.
Maurer
,
J. Chem. Phys.
154
,
230903
(
2021
).
87.
See https://pubchem.ncbi.nlm.nih.gov/ for National Institutes of Health National Library of Medicine, Pubchem Database,
2023
.
88.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
89.
F.
Weigend
and
R.
Ahlrichs
,
Phys. Chem. Chem. Phys.
7
,
3297
(
2005
).
90.
J.
Neugebauer
,
M.
Reiher
,
C.
Kind
, and
B. A.
Hess
,
J. Comput. Chem.
23
,
895
(
2002
).
91.
R. W.
Janes
,
D. H.
Peapus
, and
B. A.
Wallace
,
Nat. Struct. Biol.
1
,
311
(
1994
).
92.
J. M.
Benevides
,
S. A.
Overman
, and
G. J.
Thomas
,
Curr. Protoc. Protein Sci.
33
,
17.8.1
(
2004
).

Supplementary Material

You do not currently have access to this content.