Analytical corrections were developed to improve the accuracy of the PM6 and GFN2-xTB semiempirical quantum mechanical methods for the evaluation of noncovalent interaction energies in alkanes and alkenes. We followed the approach of functional group corrections, wherein the atom–atom pair corrections depend on the nature of the interacting functional groups. The training set includes 21 alkane and 13 alkene complexes taken from the Donchev et al.’s database [Sci. Data 8, 55 (2021)], with interaction energies calculated at the CCSD(T)/CBS level, and our own data obtained for medium-size complexes (of 100 and 112 atoms). In general, for the systems included in the training and validation sets, the errors obtained with the PM6-FGC and xTB-FGC methods are within the chemical accuracy.

1.
D.
Skouteris
,
D. E.
Manolopoulos
,
W.
Bian
,
H.-J.
Werner
,
L.-H.
Lai
, and
K.
Liu
,
Science
286
,
1713
1716
(
1999
).
2.
A. S.
Christensen
,
T.
Kubař
,
Q.
Cui
, and
M.
Elstner
,
Chem. Rev.
116
,
5301
5337
(
2016
).
3.
T.
Husch
,
A. C.
Vaucher
, and
M.
Reiher
,
Int. J. Quantum Chem.
118
,
e25799
(
2018
).
4.
W.
Thiel
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
145
157
(
2014
).
5.
M. J. S.
Dewar
,
E. G.
Zoebisch
,
E. F.
Healy
, and
J. J. P.
Stewart
,
J. Am. Chem. Soc.
115
,
5348
(
1993
).
6.
J. J. P.
Stewart
,
J. Mol. Model.
13
,
1173
1213
(
2007
).
7.
J. J. P.
Stewart
,
J. Mol. Model.
19
,
1
32
(
2013
).
8.
M.
Kolb
and
W.
Thiel
,
J. Comput. Chem.
14
,
775
789
(
1993
).
9.
W.
Weber
and
W.
Thiel
,
Theor. Chem. Acc.
103
,
495
506
(
2000
).
10.
P. O.
Dral
,
X.
Wu
,
L.
Spörkel
,
A.
Koslowski
,
W.
Weber
,
R.
Steiger
,
M.
Scholten
, and
W.
Thiel
,
J. Chem. Theory Comput.
12
,
1082
1096
(
2016
).
11.
M.
Korth
and
W.
Thiel
,
J. Chem. Theory Comput.
7
,
2929
2936
(
2011
).
12.
J. G.
Brandenburg
,
M.
Hochheim
,
T.
Bredow
, and
S.
Grimme
,
J. Phys. Chem. Lett.
5
,
4275
4284
(
2014
).
13.
C.
Bannwarth
,
S.
Ehlert
, and
S.
Grimme
,
J. Chem. Theory Comput.
15
,
1652
1671
(
2019
).
14.
C.
Bannwarth
,
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
P.
Pracht
,
J.
Seibert
,
S.
Spicher
, and
S.
Grimme
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1493
(
2021
).
15.
J.
Řezáč
and
P.
Hobza
,
J. Chem. Theory Comput.
8
,
141
151
(
2012
).
16.
J.
Řezáč
and
P.
Hobza
,
Chem. Phys. Lett.
506
,
286
289
(
2011
).
17.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
18.
J.
Řezáč
,
J.
Fanfrlík
,
D.
Salahub
, and
P.
Hobza
,
J. Chem. Theory Comput.
5
,
1749
1760
(
2009
).
19.
M.
Korth
,
M.
Pitoňák
,
J.
Řezáč
, and
P.
Hobza
,
J. Chem. Theory Comput.
6
,
344
352
(
2010
).
20.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
2427
2438
(
2011
).
21.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
7
,
3466
3470
(
2011
).
22.
J.
Řezáč
,
K. E.
Riley
, and
P.
Hobza
,
J. Chem. Theory Comput.
10
,
1359
1360
(
2014
).
23.
S.
Pérez-Tabero
,
B.
Fernández
,
E. M.
Cabaleiro-Lago
,
E.
Martínez-Núñez
, and
S. A.
Vázquez
,
J. Chem. Theory Comput.
17
,
5556
5567
(
2021
).
24.
M.
Ríos-García
,
B.
Fernández
,
J.
Rodríguez-Otero
,
E. M.
Cabaleiro-Lago
, and
S. A.
Vázquez
,
Molecules
27
,
1678
(
2022
).
25.
S.
Grimme
,
A.
Hansen
,
J. G.
Brandenburg
, and
C.
Bannwarth
,
Chem. Rev.
116
,
5105
5154
(
2016
).
26.
R.
Sure
and
S.
Grimme
,
J. Chem. Theory Comput.
11
,
3785
3801
(
2015
).
27.
J.
Řezáč
,
P.
Jurečkab
,
K. E.
Riley
,
J.
Černý
,
H.
Valdes
,
K.
Pluháčková
,
K.
Berka
,
T.
Řezáč
,
M.
Pitoňák
,
J.
Vondrášek
, and
P.
Hobza
,
Collect. Czech. Chem. Commun.
73
,
1261
1270
(
2008
).
28.
A. G.
Donchev
,
A. G.
Taube
,
E.
Decolvenaere
,
C.
Hargus
,
R. T.
McGibbon
,
K.-H.
Law
,
B. A.
Gregersen
,
J.-L.
Li
,
K.
Palmo
,
K.
Siva
,
M.
Bergdorf
,
J. L.
Klepeis
, and
D. E.
Shaw
,
Sci. Data
8
,
55
(
2021
).
29.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
1918
(
1982
).
30.
J.
Řezáč
and
P.
Hobza
,
J. Chem. Theory Comput.
9
,
2151
2155
(
2013
).
31.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
622
(
1934
).
32.
P.
Pracht
,
F.
Bohle
, and
S.
Grimme
,
Phys. Chem. Chem. Phys.
22
,
7169
7192
(
2020
).
33.
S.
Spicher
and
S.
Grimme
,
Angew. Chem., Int. Ed.
59
,
15665
15673
(
2020
).
34.
Y.
Guo
,
C.
Riplinger
,
U.
Becker
,
D. G.
Liakos
,
Y.
Minenkov
,
L.
Cavallo
, and
F.
Neese
,
J. Chem. Phys.
148
,
011101
(
2018
).
35.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
1023
(
1989
).
36.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
252
(
1998
).
37.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
9646
(
1997
).
38.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
152
(
1998
).
39.
F.
Weigend
,
Phys. Chem. Chem. Phys.
4
,
4285
4291
(
2002
).
40.
S.
Kossmann
and
F.
Neese
,
J. Chem. Theory Comput.
6
,
2325
2338
(
2010
).
41.
A.
Najibi
and
L.
Goerigk
,
J. Chem. Theory Comput.
14
,
5725
5738
(
2018
).
42.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
,
J. Comput. Chem.
32
,
1456
1465
(
2011
).
43.
S.
Grimme
,
A.
Hansen
,
S.
Ehlert
, and
J.-M.
Mewes
,
J. Chem. Phys.
154
,
064103
(
2021
).
44.
F.
Neese
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
12
,
e1606
(
2022
).
45.
J. J. P.
Stewart
, Steward Computational Chemistry, URL: http://OpenMOPAC.net,
2016
.
46.
J. M. C.
Marques
,
F. V.
Prudente
,
F. B.
Pereira
,
M. M.
Almeida
,
A. M.
Maniero
, and
C. E.
Fellows
,
J. Phys. B: At., Mol. Opt. Phys.
41
,
085103
(
2008
).
47.
M. M.
Almeida
,
F. V.
Prudente
,
C. E.
Fellows
,
J. M. C.
Marques
, and
F. B.
Pereira
,
J. Phys. B: At. Mol. Opt. Phys.
44
,
225102
(
2011
).
48.
R.
Rodríguez-Fernández
,
F. B.
Pereira
,
J. M. C.
Marques
,
E.
Martínez-Núñez
, and
S. A.
Vázquez
,
Comput. Phys. Commun.
217
,
89
98
(
2017
).
49.
D.
Weininger
,
J. Chem. Inf. Comput. Sci.
28
,
31
36
(
1988
).
50.
L.
Fiedler
,
H. R.
Leverentz
,
S.
Nachimuthu
,
J.
Friedrich
, and
D. G.
Truhlar
,
J. Chem. Theory Comput.
10
,
3129
3139
(
2014
).
51.
P. O.
Dral
,
X.
Wu
, and
W.
Thiel
,
J. Chem. Theory Comput.
15
,
1743
1760
(
2019
).
52.
See https://github.com/openmopac/mopac for Molecular Orbital PACkage (MOPAC).
53.
See https://github.com/grimme-lab/xtb for Semiempirical extended tight-binding program package xtb.

Supplementary Material

You do not currently have access to this content.