In this contribution, gravitational effects in gel-forming patchy colloidal systems are studied. We focus on how the gel structure is modified by gravity. Through Monte Carlo computer simulations of gel-like states recently identified by the rigidity percolation criterion [J. A. S. Gallegos et al., Phys. Rev. E 104, 064606 (2021)], the influence of the gravitational field, characterized by the gravitational Péclet number, Pe, on patchy colloids is studied in terms of the patchy coverage, χ. Our findings point out that there exists a threshold Péclet number, Peg, that depends on χ above which the gravitational field enhances the particle bonding and, in consequence, promotes the aggregation or clustering of particles; the smaller the χ value, the higher the Peg. Interestingly, when χ ∼ 1 (near the isotropic limit), our results are consistent with an experimentally determined threshold Pe value where gravity affects the gel formation in short-range attractive colloids. In addition, our results show that the cluster size distribution and the density profile undergo variations that lead to changes in the percolating cluster, i.e., gravity is able to modify the structure of the gel-like states. These changes have an important impact on the structural rigidity of the patchy colloidal dispersion; the percolating cluster goes from a uniform spatially network to a heterogeneous percolated structure, where an interesting structural scenario emerges, namely, depending on the Pe value, the new heterogeneous gel-like states can coexist with both diluted and dense phases or they simply reach a crystalline-like state. In the isotropic case, the increase in the Pe number can shift the critical temperature to higher temperatures; however, when Pe > 0.01, the binodal disappears and the particles fully sediment at the bottom of the sample cell. Furthermore, gravity moves the rigidity percolation threshold to lower densities. Finally, we also note that within the values of the Péclet number here explored, the cluster morphology is barely altered.

1.
R.
Castañeda-Priego
, “
Colloidal soft matter physics
,”
Rev. Mex. Fis.
67
,
050101
(
2021
).
2.
R. J.
Hunter
,
Foundations of Colloid Science
(
Oxford University Press
,
2001
).
3.
J.
Mewis
and
N. J.
Wagner
,
Colloidal Suspension Rheology
(
Cambridge University Press
,
2012
).
4.
Y.
Xia
,
B.
Gates
,
Y.
Yin
, and
Y.
Lu
, “
Monodispersed colloidal spheres: Old materials with new applications
,”
Adv. Mater.
12
,
693
713
(
2000
).
5.
S.
Schnittger
and
M.
Sinha
, “
The materials science of cosmetics
,”
MRS Bull.
32
,
760
769
(
2007
).
6.
Z.
Wang
,
Z.
Wang
,
J.
Li
,
S. T. H.
Cheung
,
C.
Tian
,
S.-H.
Kim
,
G.-R.
Yi
,
E.
Ducrot
, and
Y.
Wang
, “
Active patchy colloids with shape-tunable dynamics
,”
J. Am. Chem. Soc.
141
,
14853
14863
(
2019
).
7.
Y.
Lu
,
E.
Zhang
,
J.
Yang
, and
Z.
Cao
, “
Strategies to improve micelle stability for drug delivery
,”
Nano Res.
11
,
4985
4998
(
2018
).
8.
J. K.
Dhont
,
An Introduction to Dynamics of Colloids
(
Elsevier
,
1996
).
9.
N. E.
Valadez-Pérez
,
Y.
Liu
, and
R.
Castañeda-Priego
, “
Reversible aggregation and colloidal cluster morphology: The importance of the extended law of corresponding states
,”
Phys. Rev. Lett.
120
,
248004
(
2018
).
10.
T.
Cosgrove
,
Colloid Science: Principles, Methods and Applications
(
John Wiley & Sons
,
2010
).
11.
I.
Chakraborty
,
D. J. G.
Pearce
,
R. W.
Verweij
,
S. C.
Matysik
,
L.
Giomi
, and
D. J.
Kraft
, “
Self-assembly dynamics of reconfigurable colloidal molecules
,”
ACS Nano
16
,
2471
2480
(
2022
).
12.
N. E.
Valadez-Pérez
,
A. L.
Benavides
,
E.
Schöll-Paschinger
, and
R.
Castañeda-Priego
, “
Phase behavior of colloids and proteins in aqueous suspensions: Theory and computer simulations
,”
J. Chem. Phys.
137
,
084905
(
2012
).
13.
P. N.
Pusey
and
W.
van Megen
, “
Phase behaviour of concentrated suspensions of nearly hard colloidal spheres
,”
Nature
320
,
340
342
(
1986
).
14.
E.
Bianchi
,
R.
Blaak
, and
C. N.
Likos
, “
Patchy colloids: State of the art and perspectives
,”
Phys. Chem. Chem. Phys.
13
,
6397
6410
(
2011
).
15.
A.
Lomakin
,
N.
Asherie
, and
G. B.
Benedek
, “
Aeolotopic interactions of globular proteins
,”
Proc. Natl. Acad. Sci. U. S. A.
96
,
9465
9468
(
1999
).
16.
A.
Pal
,
V. A.
Martinez
,
T. H.
Ito
,
J.
Arlt
,
J. J.
Crassous
,
W. C. K.
Poon
, and
P.
Schurtenberger
, “
Anisotropic dynamics and kinetic arrest of dense colloidal ellipsoids in the presence of an external field studied by differential dynamic microscopy
,”
Sci. Adv.
6
,
eaaw9733
(
2020
).
17.
E.
Bianchi
,
J.
Largo
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Phase diagram of patchy colloids: Towards empty liquids
,”
Phys. Rev. Lett.
97
,
168301
(
2006
).
18.
E.
Bianchi
,
P.
Tartaglia
,
E.
Zaccarelli
, and
F.
Sciortino
, “
Theoretical and numerical study of the phase diagram of patchy colloids: Ordered and disordered patch arrangements
,”
J. Chem. Phys.
128
,
144504
(
2008
).
19.
N.
Kern
and
D.
Frenkel
, “
Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction
,”
J. Chem. Phys.
118
,
9882
9889
(
2003
).
20.
F.
Sciortino
and
E.
Zaccarelli
, “
Equilibrium gels of limited valence colloids
,”
Curr. Opin. Colloid Interface Sci.
30
,
90
96
(
2017
).
21.
G.
Wang
and
J. W.
Swan
, “
Surface heterogeneity affects percolation and gelation of colloids: Dynamic simulations with random patchy spheres
,”
Soft Matter
15
,
5094
5108
(
2019
).
22.
J. A. S.
Gallegos
,
R.
Perdomo-Pérez
,
N. E.
Valadez-Pérez
, and
R.
Castañeda-Priego
, “
Location of the gel-like boundary in patchy colloidal dispersions: Rigidity percolation, structure, and particle dynamics
,”
Phys. Rev. E
104
,
064606
(
2021
).
23.
E.
Zaccarelli
, “
Colloidal gels: Equilibrium and non-equilibrium routes
,”
J. Phys.: Condens. Matter
19
,
323101
(
2007
).
24.
P. J.
Lu
,
E.
Zaccarelli
,
F.
Ciulla
,
A. B.
Schofield
,
F.
Sciortino
, and
D. A.
Weitz
, “
Gelation of particles with short-range attraction
,”
Nature
453
,
499
503
(
2008
).
25.
A. P. R.
Eberle
,
R.
Castañeda-Priego
,
J. M.
Kim
, and
N. J.
Wagner
, “
Dynamical arrest, percolation, gelation, and glass formation in model nanoparticle dispersions with thermoreversible adhesive interactions
,”
Langmuir
28
,
1866
1878
(
2012
).
26.
S.
Marín-Aguilar
,
F.
Smallenburg
,
F.
Sciortino
, and
G.
Foffi
, “
Monodisperse patchy particle glass former
,”
J. Chem. Phys.
154
,
174501
(
2021
).
27.
J.
Russo
,
F.
Leoni
,
F.
Martelli
, and
F.
Sciortino
, “
The physics of empty liquids: From patchy particles to water
,”
Rep. Prog. Sci.
85
,
016601
(
2022
).
28.
F.
Smallenburg
and
F.
Sciortino
, “
Liquids more stable than crystals in particles with limited valence and flexible bonds
,”
Nat. Phys.
9
,
554
558
(
2013
).
29.
G.
Munaò
,
Z.
Preisler
,
T.
Vissers
,
F.
Smallenburg
, and
F.
Sciortino
, “
Cluster formation in one-patch colloids: Low coverage results
,”
Soft Matter
9
,
2652
(
2013
).
30.
Q.
Chen
,
S. C.
Bae
, and
S.
Granick
, “
Directed self-assembly of a colloidal kagome lattice
,”
Nature
469
,
381
384
(
2011
).
31.
C.-H.
Chen
,
R. K.
Shah
,
A. R.
Abate
, and
D. A.
Weitz
, “
Janus particles templated from double emulsion droplets generated using microfluidics
,”
Langmuir
25
,
4320
4323
(
2009
).
32.
Q.
Chen
,
J. K.
Whitmer
,
S.
Jiang
,
S. C.
Bae
,
E.
Luijten
, and
S.
Granick
, “
Supracolloidal reaction kinetics of Janus spheres
,”
Science
331
,
199
202
(
2011
).
33.
J. M.
Kim
,
J.
Fang
,
A. P. R.
Eberle
,
R.
Castañeda-Priego
, and
N. J.
Wagner
, “
Gel transition in adhesive hard-sphere colloidal dispersions: The role of gravitational effects
,”
Phys. Rev. Lett.
110
,
208302
(
2013
).
34.
R. B.
Rogers
,
W. V.
Meyer
,
J.
Zhu
,
P. M.
Chaikin
,
W. B.
Russel
,
M.
Li
, and
W. B.
Turner
, “
Compact laser light-scattering instrument for microgravity research
,”
Appl. Opt.
36
,
7493
(
1997
).
35.
J. K.
Whitmer
and
E.
Luijten
, “
Sedimentation of aggregating colloids
,”
J. Chem. Phys.
134
,
034510
(
2011
).
36.
P.
Padmanabhan
and
R.
Zia
, “
Gravitational collapse of colloidal gels: Non-equilibrium phase separation driven by osmotic pressure
,”
Soft Matter
14
,
3265
3287
(
2018
).
37.
D.
de las Heras
,
L. L.
Treffenstädt
, and
M.
Schmidt
, “
Reentrant network formation in patchy colloidal mixtures under gravity
,”
Phys. Rev. E
93
,
030601
(
2016
).
38.
T.
Geigenfeind
and
D.
de las Heras
, “
The role of sample height in the stacking diagram of colloidal mixtures under gravity
,”
J. Phys.: Condens. Matter
29
,
064006
(
2016
).
39.
R. B.
Teixeira
,
D.
de las Heras
,
J. M.
Tavares
, and
M. M.
Telo da Gama
, “
Phase behavior of a binary mixture of patchy colloids: Effect of particle size and gravity
,”
J. Chem. Phys.
155
,
044903
(
2021
).
40.
A. B.
Pawar
and
I.
Kretzschmar
, “
Fabrication, assembly, and application of patchy particles
,”
Macromol. Rapid Commun.
31
,
150
168
(
2010
).
41.
A.
Lotierzo
,
B. W.
Longbottom
,
W. H.
Lee
, and
S. A. F.
Bon
, “
Synthesis of Janus and patchy particles using nanogels as stabilizers in emulsion polymerization
,”
ACS Nano
13
,
399
407
(
2018
).
42.
G.
Loget
and
A.
Kuhn
, “
Bulk synthesis of Janus objects and asymmetric patchy particles
,”
J. Mater. Chem.
22
,
15457
(
2012
).
43.
S.
Ravaine
and
E.
Duguet
, “
Synthesis and assembly of patchy particles: Recent progress and future prospects
,”
Curr. Opin. Colloid Interface Sci.
30
,
45
53
(
2017
).
44.
J.
Martínez-Rivera
,
N. J.
Wagner
, and
R.
Castañeda Priego
, “
Effect of the gravitational field on the gelation of sticky colloids
” (unpublished) (
2023
).
45.
M.
Kohl
,
R. F.
Capellmann
,
M.
Laurati
,
S. U.
Egelhaaf
, and
M.
Schmiedeberg
, “
Directed percolation identified as equilibrium pre-transition towards non-equilibrium arrested gel states
,”
Nat. Commun.
7
,
11817
(
2016
).
46.
N. E.
Valadez-Pérez
,
Y.
Liu
,
A. P. R.
Eberle
,
N. J.
Wagner
, and
R.
Castañeda-Priego
, “
Dynamical arrest in adhesive hard-sphere dispersions driven by rigidity percolation
,”
Phys. Rev. E
88
,
060302
(
2013
).
47.
A. P. R.
Eberle
,
N. J.
Wagner
, and
R.
Castañeda-Priego
, “
Dynamical arrest transition in nanoparticle dispersions with short-range interactions
,”
Phys. Rev. Lett.
106
,
105704
(
2011
).
48.
H.
Tsurusawa
,
M.
Leocmach
,
J.
Russo
, and
H.
Tanaka
, “
Direct link between mechanical stability in gels and percolation of isostatic particles
,”
Sci. Adv.
5
,
eaav6090
(
2019
).
49.
R. P.
Murphy
,
H. W.
Hatch
,
N. A.
Mahynski
,
V. K.
Shen
, and
N. J.
Wagner
, “
Dynamic arrest of adhesive hard rod dispersions
,”
Soft Matter
16
,
1279
1286
(
2020
).
50.
T.
Eckert
,
M.
Schmidt
, and
D.
de las Heras
, “
Gravity-induced phase phenomena in plate-rod colloidal mixtures
,”
Commun. Phys.
4
,
202
(
2021
).
51.
S.
Buzzaccaro
,
A.
Tripodi
,
R.
Rusconi
,
D.
Vigolo
, and
R.
Piazza
, “
Kinetics of sedimentation in colloidal suspensions
,”
J. Phys.: Condens. Matter
20
,
494219
(
2008
).
52.
M. P.
Allen
and
D. J.
Tildesley
,
Computer Simulation of Liquids
(
Oxford University Press
,
2017
).
53.
A.
Vrij
, “
Polymers at interfaces and the interactions in colloidal dispersions
,”
Pure Appl. Chem.
48
,
471
483
(
1976
).
54.
N.
Wood
,
J.
Russo
,
F.
Turci
, and
C. P.
Royall
, “
Coupling of sedimentation and liquid structure: Influence on hard sphere nucleation
,”
J. Chem. Phys.
149
,
204506
(
2018
).
55.
S.
Babu
,
J.-C.
Gimel
, and
T.
Nicolai
, “
Crystallization and dynamical arrest of attractive hard spheres
,”
J. Chem. Phys.
130
,
064504
(
2009
).
56.
N. E.
Valadez-Pérez
,
R.
Castañeda-Priego
, and
Y.
Liu
, “
Percolation in colloidal systems with competing interactions: The role of long-range repulsion
,”
RSC Adv.
3
,
25110
25119
(
2013
).
57.
M. V.
Chubynsky
and
M. F.
Thorpe
, “
Algorithms for three-dimensional rigidity analysis and a first-order percolation transition
,”
Phys. Rev. E
76
,
041135
(
2007
).
58.
J. J.
Liétor-Santos
,
C.
Kim
,
P. J.
Lu
,
A.
Fernández-Nieves
, and
D. A.
Weitz
, “
Gravitational compression of colloidal gels
,”
Eur. Phys. J. E
28
,
159
164
(
2008
).
59.
H.
He
and
M. F.
Thorpe
, “
Elastic properties of glasses
,”
Phys. Rev. Lett.
54
,
2107
2110
(
1985
).
60.
M. F.
Thorpe
,
D. J.
Jacobs
,
M. V.
Chubynsky
, and
J. C.
Phillips
, “
Self-organization in network glasses
,”
J. Non-Cryst. Solids
266–269
,
859
866
(
2000
).
61.
D. J.
Jacobs
, “
Generic rigidity in three-dimensional bond-bending networks
,”
J. Phys. A: Math. Gen.
31
,
6653
6668
(
1998
).
62.
R.
Buscall
and
L. R.
White
, “
The consolidation of concentrated suspensions. Part 1.—The theory of sedimentation
,”
J. Chem. Soc., Faraday Trans. 1
83
,
873
(
1987
).
63.
P.
Bartlett
,
L. J.
Teece
, and
M. A.
Faers
, “
Sudden collapse of a colloidal gel
,”
Phys. Rev. E
85
,
021404
(
2012
).
64.
A. P. R.
Eberle
,
N.
Martys
,
L.
Porcar
,
S. R.
Kline
,
W. L.
George
,
J. M.
Kim
,
P. D.
Butler
, and
N. J.
Wagner
, “
Shear viscosity and structural scalings in model adhesive hard-sphere gels
,”
Phys. Rev. E
89
,
050302
(
2014
).
65.
M. A.
Sandoval-Puentes
,
A.
Torres-Carbajal
,
A. B.
Zavala-Martínez
,
R.
Castañeda-Priego
, and
J. M.
Méndez-Alcaraz
, “
Soft representation of the square-well and square-shoulder potentials to be used in Brownian and molecular dynamics simulations
,”
J. Phys.: Condens. Matter
34
,
164001
(
2022
).
66.
W. B.
Russel
,
W.
Russel
,
D. A.
Saville
, and
W. R.
Schowalter
,
Colloidal Dispersions
(
Cambridge University Press
,
1991
).
You do not currently have access to this content.