The time-of-flight method is a fundamental approach for characterizing the transport properties of semiconductors. Recently, the transient photocurrent and optical absorption kinetics have been simultaneously measured for thin films; pulsed-light excitation of thin films should give rise to non-negligible in-depth carrier injection. Yet, the effects of in-depth carrier injection on the transient currents and optical absorption have not yet been elucidated theoretically. Here, by considering the in-depth carrier injection in simulations, we found a 1/t1−α/2 initial time (t) dependence rather than the conventional 1/t1−α dependence under a weak external electric field, where α < 1 is the index of dispersive diffusion. The asymptotic transient currents are not influenced by the initial in-depth carrier injection and follow the conventional 1/t1+α time dependence. We also present the relation between the field-dependent mobility coefficient and the diffusion coefficient when the transport is dispersive. The field dependence of the transport coefficients influences the transit time in the photocurrent kinetics dividing two power-law decay regimes. The classical Scher–Montroll theory predicts that a1 + a2 = 2 when the initial photocurrent decay is given by 1/ta1 and the asymptotic photocurrent decay is given by 1/ta2. The results shed light on the interpretation of the power-law exponent of 1/ta1 when a1 + a2 ≠ 2.

1.
H.
Scher
and
E. W.
Montroll
,
Phys. Rev. B
12
,
2455
(
1975
).
2.
G.
Pfister
and
H.
Scher
,
Adv. Phys.
27
,
747
(
1978
).
3.
T.
Tiedje
and
A.
Rose
,
Solid State Commun.
37
,
49
(
1981
).
4.
C. E.
Nebel
and
G. H.
Bauer
,
Philos. Mag. B
59
,
463
(
1989
).
5.
T.
Yoshikawa
,
T.
Nagase
,
T.
Kobayashi
,
S.
Murakami
, and
H.
Naito
,
Thin Solid Films
516
,
2595
(
2008
).
6.
J.
Kougo
and
K.
Ishikawa
,
Jpn. J. Appl. Phys.
55
,
030304
(
2016
).
7.
G.
Bratina
and
E.
Pavlica
,
Org. Electron.
64
,
117
(
2019
).
8.
N.
Kudo
,
K.
Uchida
,
T.
Ikoma
,
K.
Takahashi
,
D.
Kuzuhara
,
M.
Suzuki
,
H.
Yamada
,
D.
Kumagai
,
Y.
Yamaguchi
, and
K.-I.
Nakayama
,
Solar RRL
2
,
1700234
(
2018
).
9.
T.
Miura
,
R.
Akiyama
,
S.
Kobayashi
, and
T.
Ikoma
,
J. Phys. Chem. C
125
,
22668
(
2021
).
10.
A. P.
Tyutnev
,
D. S.
Weiss
,
D. H.
Dunlap
, and
V. S.
Saenko
,
J. Phys. Chem. C
118
,
5150
(
2014
).
11.
A.
Hirao
,
H.
Nishizawa
, and
M.
Sugiuchi
,
Phys. Rev. Lett.
75
,
1787
(
1995
).
12.
H.
Nishizawa
and
A.
Hirao
,
Jpn. J. Appl. Phys.
45
,
L250
(
2006
).
13.
14.
A. P.
Tyutnev
,
P. E.
Parris
, and
V. S.
Saenko
,
Chem. Phys.
457
,
122
(
2015
).
15.
B. W.
Philippa
,
R. D.
White
, and
R. E.
Robson
,
Phys. Rev. E
84
,
041138
(
2011
).
16.
F.
Sagues
and
I. M.
Sokolov
,
Eur. Phys. J. B
90
,
182
(
2017
).
17.
H.
Schnörer
,
D.
Haarer
, and
A.
Blumen
,
Phys. Rev. B
38
,
8097
(
1988
).
18.
A.
Jakobs
and
K. W.
Kehr
,
Phys. Rev. B
48
,
8780
(
1993
).
19.
A. V.
Barzykin
and
M.
Tachiya
,
J. Phys. Chem. B
106
,
4356
(
2002
).
20.
K.
Seki
,
M.
Wojcik
, and
M.
Tachiya
,
J. Chem. Phys.
119
,
2165
(
2003
).
21.
K.
Seki
,
M.
Wojcik
, and
M.
Tachiya
,
J. Chem. Phys.
119
,
7525
(
2003
).
22.
NIST Handbook of Mathematical Functions
, edited by
F. W. J.
Olver
,
D. W.
Lozier
,
R. F.
Boisvert
and
C. W.
Clark
(
Cambridge University Press
,
New York
,
2010
).
23.
M.
Tachiya
and
K.
Seki
,
Phys. Rev. B
82
,
085201
(
2010
).
24.
B.
Hughes
,
Random Walks and Random Environments: Random Walks
, Oxford Science Publications No. 1 (
Clarendon Press
,
1995
).
25.
G.
Weiss
,
Aspects and Applications of the Random Walk
, International Congress Series (
North-Holland
,
1994
).
26.
Wolfram Research, Inc.
, Mathematica, Version 13,
Champaign, IL
,
2021
.
27.
28.
K.
Murayama
,
H.
Oheda
,
S.
Yamasaki
, and
A.
Matsuda
,
Solid State Commun.
81
,
887
(
1992
).
29.
S.
Nakami
,
T.
Narioka
,
T.
Kobayashi
,
T.
Nagase
, and
H.
Naito
,
J. Phys. Conf. Ser.
924
,
012009
(
2017
).
30.
J. M.
Marshall
,
Rep. Prog. Phys.
46
,
1235
(
1983
).
31.
R.
Vanderhaghen
,
Phys. Rev. B
38
,
10755
(
1988
).
32.
K.
Murayama
and
M.
Mori
,
Philos. Mag. B
65
,
501
(
1992
).
33.
K.
Seto
,
T.
Nagase
, and
H.
Naito
,
J. Non-Cryst. Solids
227-230
,
815
(
1998
).
34.
G. F.
Seynhaeve
,
R. P.
Barclay
,
G. J.
Adriaenssens
, and
J. M.
Marshall
,
Phys. Rev. B
39
,
10196
(
1989
).
35.
R. A.
Street
,
Phys. Rev. B
84
,
075208
(
2011
).
36.
B.
Derrida
,
J. Stat. Phys.
31
,
433
(
1983
).
37.
L.
Pautmeier
,
R.
Ichert
, and
H.
Bässler
,
Philos. Mag. B
63
,
587
(
1991
).
38.
C.
Aslangul
,
N.
Pottier
, and
D.
Saint-James
,
J. Phys. France
50
,
899
(
1989
).
39.
D.
Hurowitz
and
D.
Cohen
,
Phys. Rev. E
90
,
032129
(
2014
).
40.
B. G.
Bagley
,
Solid State Commun.
8
,
345
(
1970
).
41.
K.
Funabashi
and
B. N.
Rao
,
J. Chem. Phys.
64
,
1561
(
1976
).
42.
43.
V. M.
Kenkre
,
E. W.
Montroll
, and
M. F.
Shlesinger
,
J. Stat. Phys.
9
,
45
(
1973
).
44.
L.
Onsager
and
S.
Machlup
,
Phys. Rev.
91
,
1505
(
1953
).
45.
N.
Hashitsume
,
Prog. Theor. Phys.
8
,
461
(
1952
).
46.
R.
Kubo
,
K.
Matsuo
, and
K.
Kitahara
,
J. Stat. Phys.
9
,
51
(
1973
).
47.
G. N.
Bochkov
and
I. E.
Kuzovlev
,
Zh. Eksp. Teor. Fiz.
72
,
238
(
1977
).
48.
G. N.
Bochkov
and
Y. E.
Kuzovlev
,
Physica A
106
,
443
(
1981
).
49.
D. J.
Evans
,
E. G. D.
Cohen
, and
G. P.
Morriss
,
Phys. Rev. Lett.
71
,
2401
(
1993
).
50.
D. J.
Evans
and
D. J.
Searles
,
Phys. Rev. E
50
,
1645
(
1994
).
51.
G.
Gallavotti
and
E. G. D.
Cohen
,
Phys. Rev. Lett.
74
,
2694
(
1995
).
52.
D. J.
Evans
and
D. J.
Searles
,
Adv. Phys.
51
,
1529
(
2002
).
53.
R.
van Zon
and
E. G. D.
Cohen
,
Phys. Rev. E
67
,
046102
(
2003
).
54.
55.
T.
Taniguchi
and
E. G. D.
Cohen
,
J. Stat. Phys.
126
,
1
(
2007
).
56.
57.
A. V.
Chechkin
and
R.
Klages
,
J. Stat. Mech.: Theory Exp.
2009
,
L03002
.
58.
P.
Dieterich
,
R.
Klages
, and
A. V.
Chechkin
,
New J. Phys.
17
,
075004
(
2015
).
59.
E.
Barkai
and
V. N.
Fleurov
,
Phys. Rev. E
58
,
1296
(
1998
).
60.
R.
Metzler
,
E.
Barkai
, and
J.
Klafter
,
Phys. Rev. Lett.
82
,
3563
(
1999
).
61.
R.
Hou
,
A. G.
Cherstvy
,
R.
Metzler
, and
T.
Akimoto
,
Phys. Chem. Chem. Phys.
20
,
20827
(
2018
).
You do not currently have access to this content.