We investigate the structures of hydrated electrons (eaq) in one of water’s solid phases, namely, clathrate hydrates (CHs). Using density functional theory (DFT) calculations, DFT-based ab initio molecular dynamics (AIMD), and path-integral AIMD simulations with periodic boundary conditions, we find that the structure of the eaq@node model is in good agreement with the experiment, suggesting that an eaq could form a node in CHs. The node is a H2O defect in CHs that is supposed to be composed of four unsaturated hydrogen bonds. Since CHs are porous crystals that possess cavities that can accommodate small guest molecules, we expect that these guest molecules can be used to tailor the electronic structure of the eaq@node, and it leads to experimentally observed optical absorption spectra of CHs. Our findings have a general interest and extend the knowledge of eaq into porous aqueous systems.

1.
E. J.
Hart
and
J. W.
Boag
, “
Absorption spectrum of the hydrated electron in water and in aqueous solutions
,”
J. Am. Chem. Soc.
84
,
4090
4095
(
1962
).
2.
J. W.
Boag
and
E. J.
Hart
, “
Absorption spectra in irradiated water and some solutions: Absorption spectra of ‘hydrated’ electron
,”
Nature
197
,
45
47
(
1963
).
3.
A.
Kumar
,
D.
Becker
,
A.
Adhikary
, and
M. D.
Sevilla
, “
Reaction of electrons with DNA: Radiation damage to radiosensitization
,”
Int. J. Mol. Sci.
20
,
3998
(
2019
).
4.
F.
Buchner
,
T.
Kirschbaum
,
A.
Venerosy
,
H.
Girard
,
J.-C.
Arnault
,
B.
Kiendl
,
A.
Krueger
,
K.
Larsson
,
A.
Bande
,
T.
Petit
, and
C.
Merschjann
, “
Early dynamics of the emission of solvated electrons from nanodiamonds in water
,”
Nanoscale
14
,
17188
17195
(
2022
).
5.
D.
Zhu
,
L.
Zhang
,
R. E.
Ruther
, and
R. J.
Hamers
, “
Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction
,”
Nat. Mater.
12
,
836
841
(
2013
).
6.
H.
Ou
,
C.
Tang
,
X.
Chen
,
M.
Zhou
, and
X.
Wang
, “
Solvated electrons for photochemistry syntheses using conjugated carbon nitride polymers
,”
ACS Catal.
9
,
2949
2955
(
2019
).
7.
D.
Solti
,
K. D.
Chapkin
,
D.
Renard
,
A.
Bayles
,
B. D.
Clark
,
G.
Wu
,
J.
Zhou
,
A.-L.
Tsai
,
L.
Kürti
,
P.
Nordlander
, and
N. J.
Halas
, “
Plasmon-generated solvated electrons for chemical transformations
,”
J. Am. Chem. Soc.
144
,
20183
20189
(
2022
).
8.
E.
Alizadeh
and
L.
Sanche
, “
Precursors of solvated electrons in radiobiological physics and chemistry
,”
Chem. Rev.
112
,
5578
5602
(
2012
).
9.
J.
Lan
,
V. V.
Rybkin
, and
A.
Pasquarello
, “
Temperature dependent properties of the aqueous electron
,”
Angew. Chem., Int. Ed.
61
,
e202209398
(
2022
).
10.
J.
Lan
,
V.
Kapil
,
P.
Gasparotto
,
M.
Ceriotti
, and
V. V.
Rybkin
, “
Simulating the ghost: Quantum dynamics of the solvated electron
,”
Nat. Commun.
12
,
766
(
2021
).
11.
L.
Gao
,
L.
Zhang
,
Q.
Fu
, and
Y. X.
Bu
, “
Molecular dynamics characterization of dielectron hydration in liquid water with unique double proton transfers
,”
J. Chem. Theory Comput.
17
,
666
677
(
2021
).
12.
V. V.
Rybkin
, “
Mechanism of aqueous carbon dioxide reduction by the solvated electron
,”
J. Phys. Chem. B
124
,
10435
10441
(
2020
).
13.
T.
Buttersack
,
P. E.
Mason
,
R. S.
McMullen
,
H. C.
Schewe
,
T.
Martinek
,
K.
Brezina
,
M.
Crhan
,
A.
Gomez
,
D.
Hein
,
G.
Wartner
,
R.
Seidel
,
H.
Ali
,
S.
Thürmer
,
O.
Marsalek
,
B.
Winter
,
S. E.
Bradforth
, and
P.
Jungwirth
, “
Photoelectron spectra of alkali metal–ammonia microjets: From blue electrolyte to bronze metal
,”
Science
368
,
1086
1091
(
2020
).
14.
B.
Baranyi
and
L.
Turi
, “
Excess electron solvation in ammonia clusters
,”
J. Chem. Phys.
151
,
204304
(
2019
).
15.
J. M.
Herbert
and
M. P.
Coons
, “
The hydrated electron
,”
Annu. Rev. Phys. Chem.
68
,
447
472
(
2017
).
16.
C.
Bertram
,
P.
Auburger
,
M.
Bockstedte
,
J.
Stähler
,
U.
Bovensiepen
, and
K.
Morgenstern
, “
Impact of electron solvation on ice structures at the molecular scale
,”
J. Phys. Chem. Lett.
11
,
1310
1316
(
2020
).
17.
J.
Bang
and
H.
Kang
, “
Transmission and trapping of low-energy (1–10 eV) electrons in crystalline ice films
,”
J. Phys. Chem. C
124
,
15862
15869
(
2020
).
18.
M.
de Koning
,
A.
Fazzio
,
A. J. R.
da Silva
, and
A.
Antonelli
, “
On the nature of the solvated electron in ice Ih
,”
Phys. Chem. Chem. Phys.
18
,
4652
(
2016
).
19.
S. J.
Park
and
B. J.
Schwartz
, “
Understanding the temperature dependence and finite size effects in ab initio MD simulations of the hydrated electron
,”
J. Chem. Theory Comput.
18
,
4973
4982
(
2022
).
20.
Y.
Du
,
E.
Price
, and
D. M.
Bartels
, “
Solvated electron spectrum in supercooled water and ice
,”
Chem. Phys. Lett.
438
,
234
237
(
2007
).
21.
H. A.
Gillis
and
T. I.
Quickenden
, “
Excess electrons in aqueous glasses and crystalline ice
,”
Can. J. Chem.
79
,
80
93
(
2001
).
22.
J. M.
Herbert
, “
Structure of the aqueous electron
,”
Phys. Chem. Chem. Phys.
21
,
20538
20565
(
2019
).
23.
E. D.
Sloan
and
C. A.
Koh
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
CRC Taylor & Francis/CRC Press
,
Boca Raton, FL
,
2008
).
24.
J. D.
Bernal
and
R. H.
Fowler
, “
A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions
,”
J. Chem. Phys.
1
,
515
548
(
1933
).
25.
F. J. A. L.
Cruz
,
S.
Alavi
, and
J. P. B.
Mota
, “
Low-temperature thermodynamic study of the metastable empty clathrate hydrates using molecular simulations
,”
ACS Earth Space Chem.
3
,
789
799
(
2019
).
26.
Q.
Luo
and
Y.
Bu
, “
Intriguing electric field effect on magnetic spin couplings in dielectron clathrate hydrates
,”
Int. J. Quantum Chem.
119
,
e25916
(
2019
).
27.
Q.
Luo
,
C.
Zhang
, and
Y.
Bu
, “
Dielectron clathrate hydrates with unique superexchange spin couplings
,”
J. Phys. Chem. C
122
,
7635
7641
(
2018
).
28.
H.
Zhang
,
H.
Huang
,
L.
Gao
,
Q.
Fu
,
S.
Cheng
, and
Y.
Bu
, “
Magnetic dioxygen clathrate hydrates: A type of promising building blocks for icy crystalline materials
,”
J. Phys. Chem. C
124
,
10669
10678
(
2020
).
29.
K.
Shin
,
M.
Cha
,
H.
Kim
,
Y.
Jung
,
Y. S.
Kang
, and
H.
Lee
, “
Direct observation of atomic hydrogen generated from the water framework of clathrate hydrates
,”
Chem. Commun.
47
,
674
676
(
2011
).
30.
D.-Y.
Koh
,
H.
Kang
,
J.
Park
,
W.
Shin
, and
H.
Lee
, “
Atomic hydrogen production from semi-clathrate hydrates
,”
J. Am. Chem. Soc.
134
,
5560
5562
(
2012
).
31.
Q.
Lu
,
X.
He
,
W.
Hu
,
X.
Chen
, and
J.
Liu
, “
Stability, vibrations, and diffusion of hydrogen gas in clathrate hydrates: Insights from ab initio calculations on condensed-phase crystalline structures
,”
J. Phys. Chem. C
123
,
12052
12061
(
2019
).
32.
I. L.
Moudrakovski
,
K. A.
Udachin
,
S.
Alavi
,
C. I.
Ratcliffe
, and
J. A.
Ripmeester
, “
Facilitating guest transport in clathrate hydrates by tuning guest-host interactions
,”
J. Chem. Phys.
142
,
074705
(
2015
).
33.
S.
Alavi
and
J. A.
Ripmeester
, “
Hydrogen-gas migration through clathrate hydrate cages
,”
Angew. Chem., Int. Ed.
46
,
6102
6105
(
2007
).
34.
Z. P.
Zagorski
, “
Pulse radiolysis study on electrons trapped in aqueous solid clathrates
,”
J. Phys. Chem. B
90
,
957
963
(
1986
).
35.
A.
Tani
,
S.
Koyama
,
Y.
Urabe
,
K.
Takato
,
T.
Sugahara
, and
K.
Ohgaki
, “
Blue-colored tert-butylamine clathrate hydrate
,”
J. Phys. Chem. B
118
,
13409
13413
(
2014
).
36.
J.
Bednarek
,
R.
Erickson
,
A.
Lund
, and
S.
Schlick
, “
The return of the trapped electron in x-irradiated clathrate hydrates. An ESR investigation
,”
J. Am. Chem. Soc.
113
,
8990
8991
(
1991
).
37.
J.
Bednarek
,
A.
Lund
, and
S.
Schlick
, “
Unstable intermediates in X-irradiated clathrate hydrates: ESR and ENDOR of tetramethylammonium hydroxide pentahydrate (TMNOH)
,”
J. Phys. Chem.
100
,
3910
3916
(
1996
).
38.
M.
Oshima
,
K.
Kitamura
,
A.
Tani
,
T.
Sugahara
, and
K.
Ohgaki
, “
Synergistic formation of carboxyl and methyl radicals in CO2 + methane mixed gas hydrates
,”
J. Phys. Chem. B
118
,
13435
13439
(
2014
).
39.
Y. H.
Ahn
,
D.
Lim
,
J.
Min
,
J.
Kim
,
B.
Lee
,
J. W.
Lee
, and
K.
Shin
, “
Clathrate nanocage reactor for the decomposition of greenhouse gas
,”
Chem. Eng. J.
359
,
1629
1634
(
2019
).
40.
R. K.
McMullan
,
G. A.
Jeffrey
, and
T. H.
Jordan
, “
Polyhedral clathrate hydrates. XIV. The structure of (CH3)3CNH2·9¾H2O
,”
J. Chem. Phys.
47
,
1229
1234
(
1967
).
41.
A.-S.
Hehn
,
B.
Sertcan
,
F.
Belleflamme
,
S. K.
Chulkov
,
M. B.
Watkins
, and
J.
Hutter
, “
Excited-state properties for extended systems: Efficient hybrid density functional methods
,”
J. Chem. Theory Comput.
18
,
4186
4202
(
2022
).
42.
S.
Alavi
,
K.
Udachin
, and
J. A.
Ripmeester
, “
Effect of guest–host hydrogen bonding on the structures and properties of clathrate hydrates
,”
Chem. - Eur. J.
16
,
1017
1025
(
2010
).
43.
Ł.
Dobrzycki
,
P.
Taraszewska
,
R.
Boese
,
M. K.
Cyrański
, and
S. A.
Cirkel
, “
Towards clathrates: Frozen states of hydration of tert‐butylamine
,”
Angew. Chem., Int. Ed.
127
,
10276
10282
(
2015
).
44.
T. D.
Kühne
 et al., “
CP2K: An electronic structure and molecular dynamics software package-Quickstep: Efficient and accurate electronic structure calculations
,”
J. Chem. Phys.
152
,
194103
(
2020
).
45.
S.
Grimme
, “
Semiempirical GGA-type density functional constructed with a long-range dispersion correction
,”
J. Comput. Chem.
27
,
1787
1799
(
2010
).
46.
M.
Guidon
,
J.
Hutter
, and
J.
Vandevondele
, “
Auxiliary density matrix methods for Hartree–Fock exchange calculations
,”
J. Chem. Theory Comput.
6
,
2348
2364
(
2010
).
47.
S.
Goedecker
,
M.
Teter
, and
J.
Hutter
, “
Separable dual-space Gaussian pseudopotentials
,”
Phys. Rev. B
54
,
1703
1710
(
1995
).
48.
C.
Hartwigsen
,
S.
Goedecker
, and
J.
Hutter
, “
Relativistic separable dual-space Gaussian pseudopotentials from H to Rn
,”
Phys. Rev. B
58
,
3641
3662
(
1998
).
49.
G.
Bussi
,
D.
Donadio
, and
M.
Parrinello
, “
Canonical sampling through velocity rescaling
,”
J. Chem. Phys.
126
,
014101
(
2007
).
50.
M.
Ceriotti
and
D. E.
Manolopoulos
, “
Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei
,”
Phys. Rev. Lett.
109
,
100604
(
2012
).
51.
J.
Lan
,
V. V.
Rybkin
, and
M.
Iannuzzi
, “
Ionization of water as an effect of quantum delocalization at aqueous electrode interfaces
,”
J. Phys. Chem. Lett.
11
,
3724
3730
(
2020
).
52.
L.
Wang
,
S. D.
Fried
,
S. G.
Boxer
, and
T. E.
Markland
, “
Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site
,”
Proc. Natl. Acad. Sci. U. S. A.
111
,
18454
18459
(
2014
).
53.
T.
Lu
and
F.
Chen
, “
Multiwfn: A multifunctional wavefunction analyzer
,”
J. Comput. Chem.
33
,
580
592
(
2012
).
54.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
, “
VMD: Visual molecular dynamics
,”
J. Mol. Graphics
14
,
33
38
(
1996
).
55.
A.
Dreuw
and
M.
Head-Gordon
, “
Single-reference ab initio methods for the calculation of excited states of large molecules
,”
Chem. Rev.
105
,
4009
4037
(
2005
).
56.
A.
Lange
and
J. M.
Herbert
, “
Computation, simple methods to reduce charge-transfer contamination in time-dependent density-functional calculations of clusters and liquids
,”
J. Chem. Theory Comput.
3
,
1680
1690
(
2007
).
57.
F.
Uhlig
,
J. M.
Herbert
,
M. P.
Coons
, and
P.
Jungwirth
, “
Optical spectroscopy of the bulk and interfacial hydrated electron from ab initio calculations
,”
J. Phys. Chem. A
118
,
7507
7515
(
2014
).
58.
Y.
Tawada
,
T.
Tsuneda
,
S.
Yanagisawa
,
T.
Yanai
, and
K.
Hirao
, “
A long-range-corrected time-dependent density functional theory
,”
J. Chem. Phys.
120
,
8425
8433
(
2004
).
59.
K.
Yagi
,
Y.
Okano
,
T.
Sato
,
Y.
Kawashima
,
T.
Tsuneda
, and
K.
Hirao
, “
Water cluster anions studied by the long-range corrected density functional theory
,”
J. Phys. Chem. A
112
,
9845
9853
(
2008
).
60.
A.
Dreuw
,
J. L.
Weisman
, and
M.
Head-Gordon
, “
Long-range charge-transfer excited states in time-dependent density functional theory require non-local exchange
,”
J. Chem. Phys.
119
,
2943
2946
(
2003
).
61.
J. P.
Perdew
and
M.
Levy
, “
Comment on ‘Significance of the highest occupied Kohn-Sham eigenvalue
,’”
Phys. Rev. B
56
,
16021
(
1997
).
62.
R.
Baer
,
E.
Livshits
, and
U.
Salzner
, “
Tuned range-separated hybrids in density functional theory
,”
Annu. Rev. Phys. Chem.
61
,
85
109
(
2010
).
63.
F.
Ambrosio
,
G.
Miceli
, and
A.
Pasquarello
, “
Electronic levels of excess electrons in liquid water
,”
J. Phys. Chem. Lett.
8
,
2055
2059
(
2017
).
64.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
65.
F.
Ambrosio
,
G.
Miceli
, and
A.
Pasquarello
, “
Redox levels in aqueous solution: Effect of van der Waals interactions and hybrid functionals
,”
J. Chem. Phys.
143
,
244508
(
2015
).
66.
F.
Ambrosio
,
G.
Miceli
, and
A.
Pasquarello
, “
Structural, dynamical, and electronic properties of liquid water: A hybrid functional study
,”
J. Phys. Chem. B
120
,
7456
7470
(
2016
).
67.
Y. A.
Bernard
,
Y.
Shao
, and
A. I.
Krylov
, “
General formulation of spin-flip time-dependent density functional theory using non-collinear kernels: Theory, implementation, and benchmarks
,”
J. Chem. Phys.
136
,
204103
(
2012
).
68.
O. A.
Vydrov
and
T.
Van Voorhis
, “
Nonlocal van der Waals density functional: The simpler the better
,”
J. Chem. Phys.
133
,
244103
(
2010
).
69.
R.
Sabatini
,
T.
Gorni
, and
S.
De Gironcoli
, “
Nonlocal van der Waals density functional made simple and efficient
,”
Phys. Rev. B
87
,
041108(R)
(
2013
).
70.
A. D.
Becke
, “
A new mixing of Hartree–Fock and local density‐functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
71.
Z. P.
Zagórski
, “
Imperfections in the aqueous lattice of clathrates, as detected by electron trapping
,”
J. Inclusion Phenom. Mol. Recognit. Chem.
7
,
569
579
(
1989
).
72.
K.
Ohgaki
,
K.
Nakatsuji
,
K.
Takeya
,
A.
Tani
, and
T.
Sugahara
, “
Hydrogen transfer from guest molecule to radical in adjacent hydrate-cages
,”
Phys. Chem. Chem. Phys.
10
,
80
82
(
2007
).
73.
T.
Sugahara
,
Y.
Kobayashi
,
A.
Tani
,
T.
Inoue
, and
K.
Ohgaki
, “
Intermolecular hydrogen transfer between guest species in small and large cages of methane + propane mixed gas hydrates
,”
J. Phys. Chem. A
116
,
2405
2408
(
2012
).
74.
V.
Petrenko
and
R.
Whitworth
,
Physics of Ice
(
Oxford University Press
,
2002
).
75.
M.
de Koning
,
A.
Antonelli
,
A. J.
da Silva
, and
A.
Fazzio
, “
Orientational defects in ice Ih: An interpretation of electrical conductivity measurements
,”
Phys. Rev. Lett.
96
,
075501
(
2006
).
76.
M.
Natori
, “
Structural model of the hydrated electron. II
,”
J. Phys. Soc. Jpn.
24
,
913
916
(
1968
).
77.
V. N.
Shubin
,
V. A.
Zhigunov
,
V. I.
Zolotarevsky
, and
P. I.
Dolin
, “
Pulse radiolysis of crystalline ice and frozen crystalline aqueous solutions
,”
Nature
212
,
1002
(
1966
).
78.
J. M.
Herbert
and
L. D.
Jacobson
, “
Structure of the aqueous electron: Assessment of one-electron pseudopotential models in comparison to experimental data and time-dependent density functional theory
,”
J. Phys. Chem. A
115
,
14470
14483
(
2011
).
79.
F.
Uhlig
,
O.
Marsalek
, and
P.
Jungwirth
, “
Unraveling the complex nature of the hydrated electron
,”
J. Phys. Chem. Lett.
3
,
3071
3075
(
2012
).
80.
F.
Uhlig
,
O.
Marsalek
, and
P.
Jungwirth
, “
Electron at the surface of water: Dehydrated or not?
,”
J. Phys. Chem. Lett.
4
,
338
343
(
2013
).
81.
A. P.
Gaiduk
,
T. A.
Pham
,
M.
Govoni
,
F.
Paesani
, and
G.
Galli
, “
Electron affinity of liquid water
,”
Nat. Commun.
9
,
247
(
2018
).
82.
A.
Kumar
,
J. A.
Walker
,
D. M.
Bartels
, and
M. D.
Sevilla
, “
A simple ab initio model for the hydrated electron that matches experiment
,”
J. Phys. Chem. A
119
,
9148
9159
(
2015
).
83.
L. D.
Jacobson
and
J. M.
Herbert
, “
A one-electron model for the aqueous electron that includes many-body electron-water polarization: Bulk equilibrium structure, vertical electron binding energy, and optical absorption spectrum
,”
J. Chem. Phys.
133
,
154506
(
2010
).
84.
D. M.
Bartels
,
K.
Takahashi
,
J. A.
Cline
,
T. W.
Marin
, and
C. D.
Jonah
, “
Pulse radiolysis of supercritical water. 3. Spectrum and thermodynamics of the hydrated electron
,”
J. Phys. Chem. A
109
,
1299
1307
(
2005
).
85.
D. M.
Bartels
, “
Moment analysis of hydrated electron cluster spectra: Surface or internal states?
,”
J. Chem. Phys.
115
,
4404
4405
(
2001
).
86.
T. R.
Tuttle
, Jr.
and
S.
Golden
, “
Solvated electrons: What is solvated?
,”
J. Phys. Chem.
95
,
5725
5736
(
1991
).
87.
S.
Golden
and
T. R.
Tuttle
, Jr.
, “
Nature of solvated electron absorption spectra
,”
J. Chem. Soc., Faraday Trans. 2
75
,
474
484
(
1979
).
88.
H. L.
Schmider
and
A. D.
Becke
, “
Chemical content of the kinetic energy density
,”
J. Mol. Struct.: THEOCHEM
527
,
51
61
(
2000
).
89.
A. W.
Lange
and
J. M.
Herbert
, “
Both intra- and interstrand charge-transfer excited states in aqueous B-DNA are present at energies comparable to, or just above, the 1ππ* excitonic bright states
,”
J. Am. Chem. Soc.
131
,
3913
3922
(
2009
).
90.
J. R. R.
Verlet
,
A. E.
Bragg
,
A.
Kammrath
,
O.
Cheshnovsky
, and
D. M.
Neumark
, “
Observation of large water-cluster anions with surface-bound excess electrons
,”
Science
307
,
93
96
(
2005
).
91.
L.
Ma
,
K.
Majer
,
F.
Chirot
, and
B.
von Issendorff
, “
Low temperature photoelectron spectra of water cluster anions
,”
J. Chem. Phys.
131
,
144303
(
2009
).
92.
J. V.
Coe
,
G. H.
Lee
,
J. G.
Eaton
,
S. T.
Arnold
,
H. W.
Sarkas
,
K. H.
Bowen
,
C.
Ludewigt
,
H.
Haberland
, and
D. R.
Worsnop
, “
Photoelectron spectroscopy of hydrated electron cluster anions, (H2O)n=2–69
,”
J. Chem. Phys.
92
,
3980
3982
(
1990
).
93.
D.
Luckhaus
,
Y. I.
Yamamoto
,
T.
Suzuki
, and
R.
Signorell
, “
Genuine binding energy of the hydrated electron
,”
Sci. Adv.
3
,
e1603224
(
2017
).
94.
J.
Nishitani
,
Y. I.
Yamamoto
,
C. W.
West
,
S.
Karashima
, and
T.
Suzuki
, “
Binding energy of solvated electrons and retrieval of true UV photoelectron spectra of liquids
,”
Sci. Adv.
5
,
eaaw6896
(
2019
).
95.
K.
Majer
,
L.
Ma
, and
B.
von Issendorff
, “
Photoelectron spectroscopy of large water cluster anions
,”
J. Phys. Chem. A
125
,
8426
8433
(
2021
).
96.
L.
Hoddeson
,
E.
Braun
,
J.
Teichmann
, and
S.
Weart
,
Out of the Crystal Maze: Chapters from the History of Solid State Physics
(
Oxford University Press
,
1992
).
97.
C.
Liu
,
S. A.
Nikolaev
,
W.
Ren
, and
L. A.
Burton
, “
Electrides: A review
,”
J. Mater. Chem. C
8
,
10551
10567
(
2020
).
98.
J.
Ma
,
U.
Schmidhammer
, and
M.
Mostafavi
, “
Direct evidence for transient pair formation between a solvated electron and H3O+ observed by picosecond pulse radiolysis
,”
J. Phys. Chem. Lett.
5
,
2219
2223
(
2014
).
99.
R.
Spezia
,
C.
Nicolas
,
P.
Archirel
, and
A.
Boutin
, “
Molecular dynamics simulations of the Ag+ or Na+ cation with an excess electron in bulk water
,”
J. Chem. Phys.
120
,
5261
5268
(
2004
).
100.
M.
Boero
,
M.
Parrinello
,
K.
Terakura
,
T.
Ikeshoji
, and
C. C.
Liew
, “
First-principles molecular-dynamics simulations of a hydrated electron in normal and supercritical water
,”
Phys. Rev. Lett.
90
,
226403
(
2003
).
101.
Á.
Madarász
,
P. J.
Rossky
, and
L.
Turi
, “
Interior- and surface-bound excess electron states in large water cluster anions
,”
J. Chem. Phys.
130
,
124319
(
2009
).
102.
L.
Turi
and
D.
Borgis
, “
Analytical investigations of an electron–water molecule pseudopotential. II. Development of a new pair potential and molecular dynamics simulations
,”
J. Chem. Phys.
117
,
6186
6195
(
2002
).
103.
J. V.
Coe
,
S. M.
Williams
, and
K. H.
Bowen
, “
Photoelectron spectra of hydrated electron clusters vs. cluster size: Connecting to bulk
,”
Int. Rev. Phys. Chem.
27
,
27
51
(
2008
).
104.
F.-Y.
Jou
and
G. R.
Freeman
, “
Temperature and isotope effects on the shape of the optical absorption spectra of solvated electrons in water
,”
J. Phys. Chem.
83
,
2383
2387
(
1979
).

Supplementary Material

You do not currently have access to this content.