We report a molecular dynamics study of the heterogeneous crystallization of high-pressure glassy water using (plastic) ice VII as a substrate. We focus on the thermodynamic conditions P ∈ [6–8] GPa and T ∈ [100–500] K, at which (plastic) ice VII and glassy water are supposed to coexist in several (exo)planets and icy moons. We find that (plastic) ice VII undergoes a martensitic phase transition to a (plastic) fcc crystal. Depending on the molecular rotational lifetime τ, we identify three rotational regimes: for τ > 20 ps, crystallization does not occur; for τ ∼ 15 ps, we observe a very sluggish crystallization and the formation of a considerable amount of icosahedral environments trapped in a highly defective crystal or in the residual glassy matrix; and for τ < 10 ps, crystallization takes place smoothly, resulting in an almost defect-free plastic fcc solid. The presence of icosahedral environments at intermediate τ is of particular interest as it shows that such a geometry, otherwise ephemeral at lower pressures, is, indeed, present in water. We justify the presence of icosahedral structures based on geometrical arguments. Our results represent the first study of heterogeneous crystallization occurring at thermodynamic conditions of relevance for planetary science and unveil the role of molecular rotations in achieving it. Our findings (i) show that the stability of plastic ice VII, widely reported in the literature, should be reconsidered in favor of plastic fcc, (ii) provide a rationale for the role of molecular rotations in achieving heterogeneous crystallization, and (iii) represent the first evidence of long-living icosahedral structures in water. Therefore, our work pushes forward our understanding of the properties of water.

1.
S.
Hall
, “
Our solar system is overflowing with liquid water
,”
Sci. Am.
314
,
14
15
(
2016
).
2.
J. M.
Sunshine
,
T. L.
Farnham
,
L. M.
Feaga
,
O.
Groussin
,
F.
Merlin
,
R. E.
Milliken
, and
M. F.
A’Hearn
, “
Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft
,”
Science
326
(
5952
),
565
568
(
2009
).
3.
R. N.
Clark
, “
Detection of adsorbed water and hydroxyl on the moon
,”
Science
326
(
5952
),
562
564
(
2009
).
4.
S. J.
Wiktorowicz
and
A. P.
Ingersoll
, “
Liquid water oceans in ice giants
,”
Icarus
186
(
2
),
436
447
(
2007
).
5.
R.
Redmer
,
T. R.
Mattsson
,
N.
Nettelmann
, and
M.
French
, “
The phase diagram of water and the magnetic fields of Uranus and Neptune
,”
Icarus
211
,
798
803
(
2011
).
6.
H.-W.
Hsu
,
F.
Postberg
,
Y.
Sekine
,
T.
Shibuya
,
S.
Kempf
,
M.
Horańyi
,
A.
Juhaśz
,
N.
Altobelli
,
K.
Suzuki
,
Y.
Masaki
,
T.
Kuwatani
,
S.
Tachibana
,
S.-I.
Sirono
,
G.
Moragas-Klostermeyer
, and
R.
Srama
, “
Ongoing hydrothermal activities within Enceladus
,”
Nature
519
,
207
210
(
2015
).
7.
L.
Roth
,
N.
Ivchenko
,
G. R.
Gladstone
,
J.
Saur
,
D.
Grodent
,
B.
Bonfond
,
P. M.
Molyneux
, and
K. D.
Retherford
, “
A sublimated water atmosphere on Ganymede detected from Hubble Space Telescope observations
,”
Nat. Astron.
5
(
10
),
1043
1051
(
2021
).
8.
B.
Journaux
,
I.
Daniel
,
S.
Petitgirard
,
H.
Cardon
,
J.-P.
Perrillat
,
R.
Caracas
, and
M.
Mezouar
, “
Salt partitioning between water and high-pressure ices. implication for the dynamics and habitability of icy moons and water-rich planetary bodies
,”
Earth Planet. Sci. Lett.
463
,
36
47
(
2017
).
9.
C. J.
Hansen
,
L. W.
Esposito
,
J. E.
Colwell
,
A. R.
Hendrix
,
G.
Portyankina
,
A. I. F.
Stewart
, and
R. A.
West
, “
The composition and structure of Enceladus’ plume from the complete set of Cassini UVIS occultation observations
,”
Icarus
344
,
113461
(
2020
).
10.
M. C.
De Sanctis
,
J.-P.
Combe
,
E.
Ammannito
,
E.
Palomba
,
A.
Longobardo
,
T. B.
McCord
,
S.
Marchi
,
F.
Capaccioni
,
M. T.
Capria
,
D. W.
Mittlefehldt
,
C. M.
Pieters
,
J.
Sunshine
,
F.
Tosi
,
F.
Zambon
,
F.
Carraro
,
S.
Fonte
,
A.
Frigeri
,
G.
Magni
,
C. A.
Raymond
,
C. T.
Russell
, and
D.
Turrini
, “
Detection of widespread hydrated materials on Vesta by the VIR imaging spectrometer on board the Dawn mission
,”
Astrophys. J. Lett.
758
(
2
),
L36
(
2012
).
11.
O.
Ruesch
,
T.
Platz
,
P.
Schenk
,
L. A.
McFadden
,
J. C.
Castillo-Rogez
,
L. C.
Quick
,
S.
Byrne
,
F.
Preusker
,
D. P.
O’Brien
,
N.
Schmedemann
,
D. A.
Williams
,
J.-Y.
Lo
,
M. T.
Bland
,
H.
Hiesinger
,
T.
Kneissl
,
A.
Neesemann
,
M.
Schaefer
,
J. H.
Pasckert
,
B. E.
Schmidt
,
D. L.
Buczkowski
,
M. V.
Sykes
,
A.
Nathues
,
T.
Roatsch
,
M.
Hoffmann
,
C. A.
Raymond
, and
C. T.
Russell
, “
Cryovolcanism on Ceres
,”
Science
353
(
6303
),
aaf4286
(
2016
).
12.
C. J.
Bierson
,
F.
Nimmo
, and
S. A.
Stern
, “
Evidence for a hot start and early ocean formation on Pluto
,”
Nat. Geosci.
13
(
7
),
468
472
(
2020
).
13.
J. S.
Carr
and
J. R.
Najita
, “
Organic molecules and water in the planet formation region of young circumstellar disks
,”
Science
319
(
5869
),
1504
1506
(
2008
).
14.
M.
Honda
,
A. K.
Inoue
,
M.
Fukagawa
,
A.
Oka
,
T.
Nakamoto
,
M.
Ishii
,
H.
Terada
,
N.
Takato
,
H.
Kawakita
,
Y. K.
Okamoto
,
H.
Shibai
,
M.
Tamura
,
T.
Kudo
, and
Y.
Itoh
, “
Detection of water ice grains on the surface of the circumstellar disk around HD 142527
,”
Astrophys. J.
690
(
2
),
L110
(
2008
).
15.
M.
Honda
,
T.
Kudo
,
S.
Takatsuki
,
A. K.
Inoue
,
T.
Nakamoto
,
M.
Fukagawa
,
M.
Tamura
,
H.
Terada
, and
N.
Takato
, “
Water ice at the surface of the HD 100546 disk
,”
Astrophys. J.
821
(
1
),
2
(
2016
).
16.
J. A.
Eisner
, “
Water vapour and hydrogen in the terrestrial-planet-forming region of a protoplanetary disk
,”
Nature
447
(
7144
),
562
564
(
2007
).
17.
D. C.
Lis
,
D. A.
Neufeld
,
T. G.
Phillips
,
M.
Gerin
, and
R.
Neri
, “
Discovery of water vapor in the high-redshift quasar APM 08279 + 5255 at Z = 3.91
,”
Astrophys. J. Lett.
738
(
1
),
L6
(
2011
).
18.
C. G.
Salzmann
, “
Advances in the experimental exploration of water’s phase diagram
,”
J. Chem. Phys.
150
,
060901
(
2019
).
19.
V.
Kapil
,
C.
Schran
,
A.
Zen
,
J.
Chen
,
C. J.
Pickard
, and
A.
Michaelides
, “
The first-principles phase diagram of monolayer nanoconfined water
,”
Nature
609
,
512
516
(
2022
).
20.
F.
Martelli
,
N.
Giovambattista
,
S.
Torquato
, and
R.
Car
, “
Searching for crystal-ice domains in amorphous ices
,”
Phys. Rev. Mater.
2
,
075601
(
2018
).
21.
F.
Martelli
,
S.
Torquato
,
N.
Giovambattista
, and
R.
Car
, “
Large-scale structure and hyperuniformity of amorphous ices
,”
Phys. Rev. Lett.
119
,
136002
(
2017
).
22.
F.
Martelli
,
F.
Leoni
,
F.
Sciortino
, and
J.
Russo
, “
Connection between liquid and non-crystalline solid phases of water
,”
J. Chem. Phys.
153
,
104503
(
2020
).
23.
W. J.
Nellis
,
D. C.
Hamilton
,
N. C.
Holmes
,
H. B.
Radousky
,
F. H.
Ree
,
A. C.
Mitchell
, and
M.
Nicol
, “
The nature of the interior of Uranus based on studies of planetary ices at high dynamic pressure
,”
Science
240
,
779
(
1988
).
24.
R. L.
Kirk
and
D. J.
Stevenson
, “
Hydromagnetic constraints on deep zonal flows in the giant planets
,”
Astrophys. J.
316
,
836
(
1988
).
25.
L. E.
Bove
,
S.
Klotz
,
T.
Strässle
,
M.
Koza
,
J.
Teixeira
, and
A. M.
Saitta
, “
Translational and rotational diffusion in water in the gigapascal range
,”
Phys. Rev. Lett.
111
,
185901
(
2013
).
26.
J.
Sun
,
B. K.
Clark
,
S.
Torquato
, and
R.
Car
, “
The phase diagram of high-pressure superionic ice
,”
Nat. Commun.
6
,
8156
(
2015
).
27.
O.
Tschauner
,
S.
Huang
,
E.
Greenberg
,
V. B.
Prakapenja
,
C.
Ma
,
G. R.
Rossman
,
A. H.
Shen
,
D.
Zhang
,
M.
Newville
,
A.
Lanzirotti
, and
J.
Tait
, “
Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle
,”
Science
359
,
1136
1139
(
2018
).
28.
R.-S.
Taubner
,
K.
Olsson-Francis
,
S. D.
Vance
,
N. K.
Ramkissoon
,
F.
Postberg
,
J.-P.
de Vera
,
A.
Antunes
,
E.
Camprubi Casas
,
Y.
Sekine
,
L.
Noack
,
L.
Barge
,
J.
Goodman
,
M.
Jebbar
,
B.
Journaux
,
Ö.
Karatekin
,
F.
Klenner
,
E.
Rabbow
,
P.
Rettberg
,
T.
Rückriemen-Bez
,
J.
Saur
,
T.
Shibuya
, and
K. M.
Soderlund
, “
Experimental and simulation efforts in the astrobiological exploration of exooceans
,”
Space Sci. Rev.
216
,
9
41
(
2020
).
29.
J.
Russo
,
F.
Leoni
,
F.
Martelli
, and
F.
Sciortino
, “
The physics of empty liquids: From patchy particles to water
,”
Rep. Prog. Phys.
85
,
016601
(
2022
).
30.
C. M.
Tonauer
,
E.-M.
Köck
,
T. M.
Gasser
,
V.
Fuentes-Landete
,
R.
Henn
,
S.
Mayr
,
C. G.
Kirchler
,
C. W.
Huck
, and
T.
Loerting
, “
Near-infrared spectra of high-density crystalline H2O ices II, IV, V, VI, IX, and XII
,”
J. Phys. Chem. A
125
,
1062
1068
(
2021
).
31.
L.
Tian
,
A. I.
Kolesnikov
, and
J.
Li
, “
Ab initio simulation of hydrogen bonding in ices under ultra-high pressure
,”
J. Chem. Phys.
137
,
204507
(
2012
).
32.
M.
Millot
,
F.
Coppari
,
J. R.
Rygg
,
A.
Correa Barrios
,
S.
Hamel
,
D. C.
Swift
, and
J. H.
Eggert
, “
Nanosecond X-ray diffraction of shock-compressed superionic water ice
,”
Nature
569
,
251
255
(
2019
).
33.
C. G.
Salzmann
,
P. G.
Radaelli
,
B.
Slater
, and
J. L.
Finney
, “
The polymorphism of ice: Five unresolved questions
,”
Phys. Chem. Chem. Phys.
13
,
18468
18480
(
2011
).
34.
C. G.
Salzmann
,
P. G.
Radaelli
,
A.
Hallbrucker
,
E.
Mayer
, and
J. L.
Finney
, “
The preparation and structures of hydrogen ordered phases of ice
,”
Science
311
,
1758
1761
(
2006
).
35.
C. G.
Salzmann
,
P. G.
Radaelli
,
E.
Mayer
, and
J. L.
Finney
, “
Ice XV: A new thermodynamically stable phase of ice
,”
Phys. Rev. Lett.
103
,
105701
(
2009
).
36.
S.
Klotz
,
L. E.
Bove
,
T.
Strässle
,
T. C.
Hansen
, and
A. M.
Saitta
, “
The preparation and structure of salty ice VII under pressure
,”
Nat. Mater.
8
,
405
409
(
2009
).
37.
S.
Klotz
,
K.
Komatsu
,
F.
Pietrucci
,
H.
Kagi
,
A.-A.
Ludl
,
S.
Machida
,
T.
Hattori
,
A.
Sano-Furukawa
, and
L. E.
Bove
, “
Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds
,”
Sci. Rep.
6
,
32040
(
2016
).
38.
B. J.
Murray
,
T. L.
Malkin
, and
C. G.
Salzmann
, “
The crystal structure of ice under mesospheric conditions
,”
J. Atmos. Sol.-Terr. Phys.
127
,
78
82
(
2015
).
39.
W.
Zhu
,
Y.
Huang
,
C.
Zhu
,
H.-H.
Wu
,
L.
Wang
,
J.
Bai
,
J.
Yang
,
J. S.
Francisco
,
J.
Zhao
,
L.-F.
Yuan
, and
X. C.
Zeng
, “
Room temperature electrofreezing of water yields a missing dense ice phase in the phase diagram
,”
Nat. Commun.
10
(
1
),
1925
(
2019
).
40.
J.-A.
Hernandez
,
R.
Caracas
, and
S.
Labrosse
, “
Stability of high-temperature salty ice suggests electrolyte permeability in water-rich exoplanet icy mantles
,”
Nat. Commun.
13
,
3303
(
2022
).
41.
J. D.
Bernal
and
R. H.
Fowler
, “
A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions
,”
J. Chem. Phys.
1
,
515
548
(
1933
).
42.
C. P.
Herrero
and
R.
Ramírez
, “
Topological characterization of crystalline ice structures from coordination sequences
,”
Phys. Chem. Chem. Phys.
15
,
16676
16685
(
2013
).
43.
M.
Song
,
H.
Yamawaki
,
H.
Fujihisa
,
M.
Sakashita
, and
K.
Aoki
, “
Infrared investigation on ice VIII and the phase diagram of dense ices
,”
Phys. Rev. B
68
,
014106
(
2003
).
44.
M.
Song
,
H.
Yamawaki
,
H.
Fujihisa
,
M.
Sakashita
, and
K.
Aoki
, “
Infrared observation of the phase transitions of ice at low temperatures and pressures up to 50 GPa and the metastability of low-temperature ice VII
,”
Phys. Rev. B
68
,
024108
(
2003
).
45.
A. N.
Dunaeva
,
D. V.
Antsyshkin
, and
O. L.
Kuskov
, “
Phase diagram of H2O: Thermodynamic functions of the phase transitions of high-pressure ices
,”
Sol. Syst. Res.
44
,
202
222
(
2010
).
46.
C.
Cavezzoni
,
G. L.
Chiarotti
,
S.
Scandolo
,
E.
Tosatti
,
M.
Bernasconi
, and
M.
Parrinello
, “
Superionic and metallic states of water and ammonia at giant planet conditions
,”
Science
283
,
44
46
(
1999
).
47.
Y.
Takii
,
K.
Koga
, and
H.
Tanaka
, “
A plastic phase of water from computer simulation
,”
J. Chem. Phys.
128
,
204501
(
2008
).
48.
J. L.
Aragones
and
C.
Vega
, “
Plastic crystal phases of simple water models
,”
J. Chem. Phys.
130
,
244504
(
2009
).
49.
J. L.
Aragones
,
M. M.
Conde
,
E. G.
Noya
, and
C.
Vega
, “
The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: The appearance of a plastic crystal phase
,”
Phys. Chem. Chem. Phys.
11
,
543
555
(
2009
).
50.
K.
Mochizuki
,
K.
Himoto
, and
M.
Matsumoto
, “
Diversity of transition pathways in the course of crystallization into ice VII
,”
Phys. Chem. Chem. Phys.
16
,
16419
(
2014
).
51.
K.
Himoto
,
M.
Matsumoto
, and
H.
Tanaka
, “
Yet another criticality of water
,”
Phys. Chem. Chem. Phys.
16
(
11
),
5081
5087
(
2014
).
52.
J.-A.
Hernandez
and
B.
Caracas
, “
Proton dynamics and the phase diagram of dense water ice
,”
J. Chem. Phys.
148
,
214501
(
2018
).
53.
I.
Skarmoutsos
,
S.
Mossa
, and
E.
Guardia
, “
The effect of polymorphism on the structural, dynamic and dielectric properties of plastic crystal water: A molecular dynamics simulation perspective
,”
J. Chem. Phys.
150
,
124506
(
2019
).
54.
Y.
Adachi
and
K.
Koga
, “
Structure and phase behavior of high-density ice from molecular dynamics simulations with the ReaxFF potential
,”
J. Chem. Phys.
153
,
114501
(
2020
).
55.
A.
Henao
,
J. M.
Salazar-Rios
,
E.
Guardia
, and
L. C.
Pardo
, “
Structure and dynamics of water plastic crystals from computer simulations
,”
J. Chem. Phys.
154
,
104501
(
2021
).
56.
I.
Skarmoutsos
,
A.
Henao
,
E.
Guardia
, and
J.
Samios
, “
On the different faces of the supercritical phase of water at a near-critical temperature: Pressure-induced structural transitions ranging from a gaslike fluid to a plastic crystal polymorph
,”
J. Phys. Chem. B
125
,
10260
10272
(
2021
).
57.
D.
Prasad
and
N.
Mitra
, “
High-temperature and high-pressure plastic phase of ice at the boundary of liquid water and ice VII
,”
Proc. R. Soc. A
478
,
20210958
(
2022
).
58.
M.
Matsumoto
,
K.
Himoto
, and
H.
Tanaka
, “
Spin-one Ising model for ice VII–plastic ice phase transitions
,”
J. Phys. Chem. B
118
,
13387
13392
(
2014
).
59.
A.
Toffano
,
J.
Russo
,
M.
Rescignao
,
U.
Ranieri
,
L. E.
Bove
, and
F.
Martelli
, “
Temperature- and pressure-dependence of the hydrogen bond network in plastic ice VII
,”
J. Chem. Phys.
157
(
9
),
094502
(
2022
).
60.
D.
Charbonneau
,
Z. K.
Berta
,
J.
Irwi
,
C. J.
Burke
,
P.
Nutzman
,
L. A.
Buchhave
,
C.
Lovis
,
X.
Bonfils
,
D. W.
Latham
,
S.
Udry
,
R. A.
Murray-Clay
,
M. J.
Holman
,
E. E.
Falco
,
J. N.
Winn
,
D.
Queloz
,
F.
Pepe
,
M.
Mayor
,
X.
Delfosse
, and
T.
Forveille
, “
A super-Earth transiting a nearby low-mass star
,”
Nature
462
(
7275
),
891
894
(
2009
).
61.
M.
Gillon
,
F.
Pont
,
B.-O.
Demory
,
F.
Mallmann
,
M.
Mayor
,
T.
Mazeh
,
D.
Queloz
,
A.
Shporer
,
S.
Udry
, and
C.
Vuissoz
, “
Detection of transits of the nearby hot Neptune GJ 436 b
,”
Astron. Astrophys.
472
(
2
),
L13
L16
(
2007
).
62.
M.
Gillon
,
B.-O.
Demory
,
T.
Barman
,
X.
Bonfils
,
T.
Mazeh
,
F.
Pont
,
S.
Udry
,
M.
Mayor
, and
D.
Queloz
, “
Accurate Spitzer infrared radius measurement for the hot Neptune GJ 436 b
,”
Astron. Astrophys.
471
(
3
),
L51
L54
(
2007
).
63.
F.
Martelli
,
H.-Y.
Ko
,
E. C.
Oğuz
, and
R.
Car
, “
Local-order metric for condensed-phase environments
,”
Phys. Rev. B
97
,
064105
(
2016
).
64.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1
,
19
25
(
2015
).
65.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
66.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
67.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
68.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
).
69.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
, “
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
,”
J. Chem. Phys.
76
,
637
649
(
1982
).
70.
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
, “
GenIce: Hydrogen-disordered ice generator
,”
J. Comput. Chem.
39
,
61
64
(
2017
).
71.
See https://github.com/SSAGESLabs/PySAGES for the open source code.
72.
P. F.
Zubieta Rico
,
L.
Schneider
,
G.
Perez-Lemus
,
R.
Alessandri
,
S.
Dasetty
,
C. A.
Menéndez
,
Y.
Wu
,
Y.
Jin
,
T.
Nguyen
,
J.
Parker
,
A. L.
Ferguson
, and
J. J.
de Pablo
, “
PySAGES: Flexible, advanced sampling methods accelerated with GPUs
,” arXiv:2301.04835 (
2023
).
73.
A.
Stukowski
, “
Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool
,”
Modell. Simul. Mater. Sci. Eng.
18
(
1
),
015012
(
2009
).
74.
R.
Kohlrausch
, “
Theorie des elektrischen rückstandes in der leidener flasche
,”
Ann. Phys.
167
(
2
),
179
214
(
1854
).
75.
G.
Williams
and
D. C.
Watts
, “
Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function
,”
Trans. Faraday Soc.
66
,
80
85
(
1970
).
76.
P. G.
Debenedetti
,
Metastable Liquids
(
Princeton University Press
,
2021
).
77.

Similar conclusions apply to the cases of P = 6 GPa and T = 200 K; P = 7 GPa and T = 100 K and T = 200 K; and P = 8 GPa and T = 100 K and T = 200 K. At these conditions, molecular rotations are mostly inactive.

78.
J.
Russo
,
F.
Romano
, and
H.
Tanaka
, “
New metastable form of ice and its role in the homogeneous crystallization of water
,”
Nat. Mater.
13
,
733
(
2014
).
79.
F.
Martelli
and
J. C.
Palmer
, “
Signatures of sluggish dynamics and local structural ordering during ice nucleation
,”
J. Chem. Phys.
156
(
11
),
114502
(
2022
).
80.
I. P.
Buffey
,
W.
Byers Brown
, and
H. A.
Gebbie
, “
Icosahedral water clusters
,”
Chem. Phys. Lett.
148
(
4
),
281
284
(
1988
).
81.
O.
Loboda
and
V.
Goncharuk
, “
Theoretical study on icosahedral water clusters
,”
Chem. Phys. Lett.
484
(
4–6
),
144
147
(
2010
).
82.
A.
Müller
,
E.
Krickemeyer
,
H.
Bögge
,
M.
Schmidtmann
,
S.
Roy
, and
A.
Berkle
, “
Changeable pore sizes allowing effective and specific recognition by a molybdenum-oxide based ‘nanosponge’: En route to sphere-surface and nanoporous-cluster chemistry
,”
Angew. Chem., Int. Ed.
41
(
19
),
3604
3609
(
2002
).
83.
J. J.
Shephard
and
C. G.
Salzmann
, “
Molecular reorientation dynamics govern the glass transitions of the amorphous ices
,”
J. Phys. Chem. Lett.
7
(
12
),
2281
2285
(
2016
).
84.
O.
Haida
,
T.
Matsuo
,
H.
Suga
, and
S.
Seki
, “
Calorimetric study of the glassy state X. Enthalpy relaxation at the glass-transition temperature of hexagonal ice
,”
J. Chem. Thermodyn.
6
(
9
),
815
825
(
1974
).
85.
H.
Suga
,
T.
Matsuo
, and
O.
Yamamuro
, “
Thermodynamic study of ice and clathrate hydrates
,”
Pure Appl. Chem.
64
(
1
),
17
26
(
1992
).
86.
C. G.
Salzmann
,
I.
Kohl
,
T.
Loerting
,
E.
Mayer
, and
A.
Hallbrucker
, “
The low-temperature dynamics of recovered ice XII as studied by differential scanning calorimetry: A comparison with ice V
,”
Phys. Chem. Chem. Phys.
5
(
16
),
3507
3517
(
2003
).
87.
C. G.
Salzmann
,
E.
Mayer
, and
A.
Hallbrucker
, “
Thermal properties of metastable ices IV and XII: Comparison, isotope effects and relative stabilities
,”
Phys, Chem. Chem. Phys.
6
(
6
),
1269
1276
(
2004
).
88.
C. G.
Salzmann
,
P. G.
Radaelli
,
J. L.
Finney
, and
E.
Mayer
, “
A calorimetric study on the low temperature dynamics of doped ice V and its reversible phase transition to hydrogen ordered ice XIII
,”
Phys. Chem. Chem. Phys.
10
(
41
),
6313
6324
(
2008
).
89.
J. J.
Shephard
and
C. G.
Salzmann
, “
The complex kinetics of the ice VI to ice XV hydrogen ordering phase transition
,”
Chem. Phys. Lett.
637
,
63
66
(
2015
).
90.
S.
Mukherjee
and
B.
Bagchi
, “
Entropic origin of the attenuated width of the ice–water interface
,”
J. Phys. Chem. C
124
(
13
),
7334
7340
(
2020
).
91.

Similar conclusions apply to the higher temperature of T = 500 K, and therefore, we limit ourselves to presenting the results for T = 400 K.

You do not currently have access to this content.