Although clusters made of polycyclic aromatic hydrocarbon and water monomers are relevant objects in both atmospheric and astrophysical science, little is known about their energetic and structural properties. In this work, we perform global explorations of the potential energy landscapes of neutral clusters made of two pyrene units and one to ten water molecules using a density-functional-based tight-binding (DFTB) potential followed by local optimizations at the density-functional theory level. We discuss the binding energies with respect to various dissociation channels. It shows that cohesion energies of the water clusters interacting with a pyrene dimer are larger than those of the pure water clusters, reaching for the largest clusters an asymptotic limit similar to that of pure water clusters and that, although the hexamer and octamer can be considered magic numbers for isolated water clusters, it is not the case anymore when they are interacting with a pyrene dimer. Ionization potentials are also computed by making use of the configuration interaction extension of DFTB, and we show that in cations, the charge is mostly carried by the pyrene molecules.

1.
J. H.
Seinfeld
and
S. N.
Pandis
,
Atmospheric Chemistry and Physics: From Air Pollution to Climate Change
(
John Wiley & Sons Inc.
,
Hoboken, NJ
,
2016
).
2.
I. S.
Vinklárek
,
A.
Pysanenko
,
E.
Pluhařová
, and
M.
Fárník
,
J. Phys. Chem. Lett.
13
,
3781
(
2022
).
3.
A. R.
Ravishankara
,
Science
276
,
1058
(
1997
).
4.
C.
George
,
M.
Ammann
,
B.
D’Anna
,
D. J.
Donaldson
, and
S. A.
Nizkorodov
,
Chem. Rev.
115
,
4218
(
2015
).
5.
L. J.
Allamandola
,
A. G. G. M.
Tielens
, and
J. R.
Barker
,
Astrophys. J.
290
,
L25
(
1985
).
6.
A.
Léger
and
J. L.
Puget
,
Astron. Astrophys.
137
,
L5
(
1984
); available at https://ui.adsabs.harvard.edu/abs/1984A%26A...137L...5L/abstract
7.
L. J.
Allamandola
,
A. G. G. M.
Tielens
, and
J. R.
Barker
,
Astrophys. J. Suppl. Ser.
71
,
733
(
1989
).
8.
A. G. G. M.
Tielens
,
Annu. Rev. Astron. Astrophys.
46
,
289
(
2008
).
9.
B. A.
McGuire
,
R. A.
Loomis
,
A. M.
Burkhardt
,
K. L. K.
Lee
,
C. N.
Shingledecker
,
S. B.
Charnley
,
I. R.
Cooke
,
M. A.
Cordiner
,
E.
Herbst
,
S.
Kalenskii
,
M. A.
Siebert
,
E. R.
Willis
,
C.
Xue
,
A. J.
Remijan
, and
M. C.
McCarthy
,
Science
371
,
1265
(
2021
).
10.
J.
Bouwman
,
A. L.
Mattioda
,
H.
Linnartz
, and
L. J.
Allamandola
,
Astron. Astrophys.
525
,
A93
(
2011
).
11.
J. A.
Noble
,
E.
Michoulier
,
C.
Aupetit
, and
J.
Mascetti
,
Astron. Astrophys.
644
,
A22
(
2020
).
12.
M.
Rapacioli
,
C.
Joblin
, and
P.
Boissel
,
Astron. Astrophys.
429
,
193
(
2005
).
13.
O.
Berné
,
C.
Joblin
,
Y.
Deville
,
J. D.
Smith
,
M.
Rapacioli
,
J. P.
Bernard
,
J.
Thomas
,
W.
Reach
, and
A.
Abergel
,
Astron. Astrophys.
469
,
575
(
2007
); arXiv:astro-ph/0703072.
14.
P.
Pilleri
,
J.
Montillaud
,
O.
Berné
, and
C.
Joblin
,
Astron. Astrophys.
542
,
A69
(
2012
).
15.
Z.
Guennoun
,
C.
Aupetit
, and
J.
Mascetti
,
Phys. Chem. Chem. Phys.
13
,
7340
(
2011
).
16.
Z.
Guennoun
,
C.
Aupetit
, and
J.
Mascetti
,
J. Phys. Chem. A
115
,
1844
(
2011
).
17.
J. A.
Noble
,
C.
Jouvet
,
C.
Aupetit
,
A.
Moudens
, and
J.
Mascetti
,
Astron. Astrophys.
599
,
A124
(
2017
).
18.
A.
Simon
,
J. A.
Noble
,
G.
Rouaut
,
A.
Moudens
,
C.
Aupetit
,
C.
Iftner
, and
J.
Mascetti
,
Phys. Chem. Chem. Phys.
19
,
8516
(
2017
).
19.
H.
Leboucher
,
J.
Mascetti
,
C.
Aupetit
,
J. A.
Noble
, and
A.
Simon
,
Photochem
2
,
237
(
2022
).
20.
C.
Pérez
,
A. L.
Steber
,
A. M.
Rijs
,
B.
Temelso
,
G. C.
Shields
,
J. C.
Lopez
,
Z.
Kisiel
, and
M.
Schnell
,
Phys. Chem. Chem. Phys.
19
,
14214
(
2017
).
21.
A. K.
Lemmens
,
S.
Gruet
,
A. L.
Steber
,
J.
Antony
,
S.
Grimme
,
M.
Schnell
, and
A. M.
Rijs
,
Phys. Chem. Chem. Phys.
21
,
3414
(
2019
).
22.
D.
Loru
,
A. L.
Steber
,
P.
Pinacho
,
S.
Gruet
,
B.
Temelso
,
A. M.
Rijs
,
C.
Pérez
, and
M.
Schnell
,
Phys. Chem. Chem. Phys.
23
,
9721
(
2021
).
23.
S.
Zamith
,
A.
Kassem
,
J.-M.
L’Hermite
, and
C.
Joblin
,
J. Phys. Chem. A
126
,
3696
(
2022
).
24.
E.
Yurtsever
,
Theor. Chem. Acc.
127
,
133
(
2010
).
25.
M.
Piacenza
and
S.
Grimme
,
J. Am. Chem. Soc.
127
,
14841
(
2005
).
26.
Ö.
Birer
and
E.
Yurtsever
,
J. Mol. Struct.
1097
,
29
(
2015
).
27.
R.
Podeszwa
,
J. Chem. Phys.
132
,
044704
(
2010
).
28.
Y.
Zhao
and
D. G.
Truhlar
,
J. Phys. Chem. C
112
,
4061
(
2008
).
29.
J. C.
Sancho-García
and
A. J.
Pérez-Jiménez
,
Phys. Chem. Chem. Phys.
11
,
2741
(
2009
).
30.
S. E.
Fioressi
,
R. C.
Binning
, and
D. E.
Bacelo
,
Chem. Phys. Lett.
454
,
269
(
2008
).
31.
O. I.
Obolensky
,
V. V.
Semenikhina
,
A. V.
Solov’yov
, and
W.
Greiner
,
Int. J. Quantum Chem.
107
,
1335
(
2007
).
32.
M.
Bartolomei
,
F.
Pirani
, and
J. M. C.
Marques
,
J. Phys. Chem.C
121
,
14330
(
2017
).
33.
A.
Ricca
,
C. W.
Bauschlicher
, and
L. J.
Allamandola
,
Astrophys. J.
776
,
31
(
2013
).
34.
A.
Zamir
,
E.
Rossich Molina
,
M.
Ahmed
, and
T.
Stein
,
Phys. Chem. Chem. Phys.
24
,
28788
(
2022
).
35.
D.
Porezag
,
T.
Frauenheim
,
T.
Köhler
,
G.
Seifert
, and
R.
Kaschner
,
Phys. Rev.B
51
,
12947
(
1995
).
36.
G.
Seifert
,
D.
Porezag
, and
T.
Frauenheim
,
Int. J. Quantum Chem.
58
,
185
(
1996
).
37.
M.
Elstner
,
D.
Porezag
,
G.
Jungnickel
,
J.
Elsner
,
M.
Haugk
,
T.
Frauenheim
,
S.
Suhai
, and
G.
Seifert
,
Phys. Rev.B
58
,
7260
(
1998
).
38.
M.
Elstner
,
Theor. Chem. Acc.
116
,
316
(
2006
).
39.
L.
Zhechkov
,
T.
Heine
,
S.
Patchkovskii
,
G.
Seifert
, and
H. A.
Duarte
,
J. Chem. Theor. Comput.
1
,
841
(
2005
).
40.
M.
Rapacioli
,
F.
Spiegelman
,
D.
Talbi
,
T.
Mineva
,
A.
Goursot
,
T.
Heine
, and
G.
Seifert
,
J. Chem. Phys.
130
,
244304
(
2009
).
41.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
,
J. Chem. Phys.
120
,
524
(
2004
).
42.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
,
Phys. Chem. Chem. Phys.
6
,
1096
(
2004
).
43.
M.
Rapacioli
,
F.
Spiegelman
,
A.
Scemama
, and
A.
Mirtschink
,
J. Chem. Theor. Comput.
7
,
44
(
2011
).
44.
M.
Rapacioli
and
F.
Spiegelman
,
Eur. Phys. J. D
52
,
55
(
2009
).
45.
L.
Dontot
,
N.
Suaud
,
M.
Rapacioli
, and
F.
Spiegelman
,
Phys. Chem. Chem. Phys.
18
,
3545
(
2016
).
46.
E.
Rossich Molina
,
B.
Xu
,
O.
Kostko
,
M.
Ahmed
, and
T.
Stein
,
Phys. Chem. Chem. Phys.
24
,
23106
(
2022
).
47.
L.
Dontot
,
F.
Spiegelman
, and
M.
Rapacioli
,
J. Phys. Chem. A
123
,
9531
(
2019
).
48.
A.
Simon
,
M.
Rapacioli
,
J.
Mascetti
, and
F.
Spiegelman
,
Phys. Chem. Chem. Phys.
14
,
6771
(
2012
).
49.
A.
Simon
and
F.
Spiegelman
,
J. Chem. Phys.
138
,
194309
(
2013
).
50.
A.
Simon
and
F.
Spiegelman
,
Comput. Theor. Chem.
1021
,
54
(
2013
).
51.
L. F. L.
Oliveira
,
J.
Cuny
,
M.
Morinière
,
L.
Dontot
,
A.
Simon
,
F.
Spiegelman
, and
M.
Rapacioli
,
Phys. Chem. Chem. Phys.
17
,
17079
(
2015
).
52.
E.
Michoulier
,
N.
Ben Amor
,
M.
Rapacioli
,
J. A.
Noble
,
J.
Mascetti
,
C.
Toubin
, and
A.
Simon
,
Phys. Chem. Chem. Phys.
20
,
11941
(
2018
).
53.
E.
Michoulier
,
C.
Toubin
,
A.
Simon
,
J.
Mascetti
,
C.
Aupetit
, and
J. A.
Noble
,
J. Phys. Chem. C
124
,
2994
(
2020
).
54.
O.
Berné
,
É.
Habart
,
E.
Peeters
 et al.,
Publ. Astron. Soc. Pac.
134
,
054301
(
2022
).
55.
F.
Spiegelman
,
N.
Tarrat
,
J.
Cuny
,
L.
Dontot
,
E.
Posenitskiy
,
C.
Martí
,
A.
Simon
, and
M.
Rapacioli
,
Adv. Phys.: X
5
,
1710252
(
2020
).
56.
T.
Frauenheim
,
G.
Seifert
,
M.
Elsterner
,
Z.
Hajnal
,
G.
Jungnickel
,
D.
Porezag
,
S.
Suhai
, and
R.
Scholz
,
Phys. Status Solidi B
217
,
41
(
2000
).
57.
A. F.
Oliveira
,
G.
Seifert
,
T.
Heine
, and
H. A.
Duarte
,
J. Braz. Chem. Soc.
20
,
1193
(
2009
).
58.
P.
Koskinen
and
V.
Mäkinen
,
Comput. Mater. Sci.
47
,
237
(
2009
).
59.
M.
Elstner
,
P.
Hobza
,
T.
Frauenheim
,
S.
Suhai
, and
E.
Kaxiras
,
J. Chem. Phys.
114
,
5149
(
2001
).
60.
A.
Goursot
,
T.
Mineva
,
R.
Kevorkyants
, and
D.
Talbi
,
J. Chem. Theor. Comput.
3
,
755
(
2007
).
61.
L.
Zheng
,
S.
Zamith
, and
M.
Rapacioli
,
M., Theor Chem Acc
140
,
19
(
2021
).
62.
K.
Korchagina
,
A.
Simon
,
M.
Rapacioli
,
F.
Spiegelman
,
J.-M.
L’Hermite
,
I.
Braud
,
S.
Zamith
, and
J.
Cuny
,
Phys. Chem. Chem. Phys.
19
,
27288
(
2017
).
63.
A.
Simon
,
M.
Rapacioli
,
E.
Michoulier
,
L.
Zheng
,
K.
Korchagina
, and
J.
Cuny
,
Mol. Simul.
45
,
249
(
2019
).
64.
J.
Li
,
T.
Zhu
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. A
102
,
1820
(
1998
).
65.
J.
Frenzel
,
A. F.
Oliveira
,
N.
Jardillier
,
T.
Heine
, and
G.
Seifert
, “
Semi-relativistic, self-consistent charge Slater-Koster tables for density-functional based tight-binding (DFTB) for materials science simulations
,”
Zeolites
2
,
7
(
2004
).
66.
Q.
Wu
,
C.-L.
Cheng
, and
T.
Van Voorhis
,
J. Chem. Phys.
127
,
164119
(
2007
).
67.
L.
Dontot
,
F.
Spiegelman
,
S.
Zamith
, and
M.
Rapacioli
,
Eur. Phys. J. D
74
,
216
(
2020
).
68.
L.
Lei
,
Y.
Yao
,
J.
Zhang
,
D.
Tronrud
,
W.
Kong
,
C.
Zhang
,
L.
Xue
,
L.
Dontot
, and
M.
Rapacioli
,
J. Phys. Chem. Lett.
11
,
724
(
2020
).
69.
S.
Zamith
,
J.-M.
L’Hermite
,
L.
Dontot
,
L.
Zheng
,
M.
Rapacioli
,
F.
Spiegelman
, and
C.
Joblin
,
J. Chem. Phys.
153
,
054311
(
2020
).
70.
S.
Zamith
,
M.-C.
Ji
,
J.-M.
L’Hermite
,
C.
Joblin
,
L.
Dontot
,
M.
Rapacioli
, and
F.
Spiegelman
,
J. Chem. Phys.
151
,
194303
(
2019
).
71.
C.
Joblin
,
L.
Dontot
,
G. A.
Garcia
,
F.
Spiegelman
,
M.
Rapacioli
,
L.
Nahon
,
P.
Parneix
,
T.
Pino
, and
P.
Bréchignac
,
J. Phys. Chem. Lett.
8
,
3697
(
2017
).
72.
B.
Hourahine
,
B.
Aradi
, and
T.
Frauenheim
,
J. Phys. Conf. Ser.
242
,
012005
(
2010
).
73.
Y.
Zhao
and
D. G.
Truhlar
,
Acc. Chem. Res.
41
,
157
(
2008
).
74.
T. H.
Dunning
, Jr.
and
P. J.
Hay
, “
Modern theoretical chemistry
,” in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
 III
(
Plenum
,
New York
,
1976
), Vol. 3, pp.
1
28
.
75.
Y.
Sugita
and
Y.
Okamoto
,
Chem. Phys. Lett.
314
,
141
(
1999
).
76.
R. H.
Swendsen
and
J.-S.
Wang
,
Phys. Rev. Lett.
57
,
2607
(
1986
).
77.
U. H. E.
Hansmann
,
Chem. Phys. Lett.
281
,
140
(
1997
).
78.
F.
Calvo
,
J. Chem. Phys.
123
,
124106
(
2005
).
79.
M.
Rapacioli
,
T.
Heine
,
L.
Dontot
,
M.
Yusef Buey
,
N.
Tarrat
,
F.
Spiegelman
,
F.
Louisnard
,
J.
Cuny
,
M.
Morinière
,
C.
Dubosq
,
S.
Patchkovskii
,
J.
Frenzel
,
E.
Michoulier
,
H. A.
Duarte
,
T.
Minneva
,
L.
Zchekhov
, and
D.
Salahub
, deMonNano experiment, http://demon-nano.ups-tlse.fr/,
2023
.
80.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
81.
S.
Simon
,
M.
Duran
, and
J. J.
Dannenberg
,
J. Chem. Phys.
105
,
11024
(
1996
).
82.
P.
Linstrom
and
W.
Mallard
,
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
(
N. I. of Standards and Technology
,
Gaithersburg MD
,
2022
), p.
20899
.

Supplementary Material

You do not currently have access to this content.