Spectra of rare gas atom clusters containing a single carbon dioxide molecule are observed using a tunable mid-infrared (4.3 µm) source to probe a pulsed slit jet supersonic expansion. There are relatively few previous detailed experimental results on such clusters. The assigned clusters include CO2–Arn with n = 3, 4, 6, 9, 10, 11, 12, 15, and 17, and CO2–Krn and CO2–Xen with n = 3, 4, and 5. Each spectrum has (at least) a partially resolved rotational structure, and each yields precise values for the shift of the CO2 vibrational frequency (ν3) induced by the nearby rare gas atoms, together with one or more rotational constants. These results are compared with theoretical predictions. The more readily assigned CO2–Arn species tend to be those with symmetric structures, and CO2–Ar17 represents completion of a highly symmetric (D5h) solvation shell. Those not assigned (e.g., n = 7 and 13) are probably also present in the observed spectra but with band structures that are not well-resolved and, thus, are not recognizable. The spectra of CO2–Ar9, CO2–Ar15, and CO2–Ar17 suggest the presence of sequences involving very low frequency (≈2 cm−1) cluster vibrational modes, an interpretation which should be amenable to theoretical confirmation (or rejection).

1.
J. P. K.
Doye
,
M. A.
Miller
, and
D. J.
Wales
, “
Evolution of the potential energy surface with size for Lennard-Jones clusters
,”
J. Chem. Phys.
111
,
8417
8428
(
1999
).
2.
J.
Tang
and
A. R. W.
McKellar
, “
High resolution infrared spectra of a carbon dioxide molecule solvated with helium atoms
,”
J. Chem. Phys.
121
,
181
190
(
2004
).
3.
A. R. W.
McKellar
, “
Infrared spectra of CO2-doped 4He clusters, 4HeN-CO2, with N = 1 – 60
,”
J. Chem. Phys.
128
,
044308
(
2008
).
4.
A. J.
Barclay
,
A. R. W.
McKellar
, and
N.
Moazzen-Ahmadi
, “
Observing the completion of the first solvation shell of carbon dioxide in argon from rotationally resolved spectra
,”
J. Phys. Chem. Lett.
13
,
6311
6315
(
2022
).
5.
J. M.
Steed
,
T. A.
Dixon
, and
W.
Klemperer
, “
Determination of the structure of ArCO2 by radio frequency and microwave spectroscopy
,”
J. Chem. Phys.
70
,
4095
4100
(
1979
).
Erratum
75
,
5977
(
1981
).
6.
G. T.
Fraser
,
A. S.
Pine
, and
R. D.
Suenram
, “
Optothermal‐infrared and pulsed‐nozzle Fourier‐transform microwave spectroscopy of rare gas–CO2 complexes
,”
J. Chem. Phys.
88
,
6157
6167
(
1988
).
7.
H.
Mäder
,
N.
Heineking
,
W.
Stahl
,
W.
Jäger
, and
Y.
Xu
, “
Rotational spectrum of the isotopically substituted van der Waals complex Ar–CO2 investigated with a molecular beam Fourier transform microwave spectrometer
,”
J. Chem. Soc. Faraday Trans.
92
,
901
905
(
1996
).
8.
R. W.
Randall
,
M. A.
Walsh
, and
B. J.
Howard
, “
Infrared absorption spectroscopy of rare-gas – CO2 clusters produced in supersonic expansions
,”
Faraday Discuss. Chem. Soc.
85
,
13
21
(
1988
).
9.
S. W.
Sharpe
,
R.
Sheeks
,
C.
Wittig
, and
R. A.
Beaudet
, “
Infrared absorption spectroscopy of CO2-Ar complexes
,”
Chem. Phys. Lett.
151
,
267
272
(
1988
).
10.
S. W.
Sharpe
,
D.
Reifschneider
,
C.
Wittig
, and
R. A.
Beaudet
, “
Infrared absorption spectroscopy of the CO2–Ar complex in the 2376 cm−1 combination band region: The intermolecular bend
,”
J. Chem. Phys.
94
,
233
238
(
1991
).
11.
Y.
Ozaki
,
K.
Horiai
,
T.
Konno
, and
H.
Uehara
, “
Infrared absorption spectroscopy of Ar–12C18O2: Change in the intramolecular potential upon complex formation
,”
Chem. Phys. Lett.
335
,
188
194
(
2001
).
12.
E. J.
Bohac
,
M. D.
Marshall
, and
R. E.
Miller
, “
The vibrational predissociation of Ar–CO2 at the state‐to‐state level. I. Vibrational propensity rules
,”
J. Chem. Phys.
97
,
4890
4900
(
1992
).
13.
J.
Thiévin
,
Y.
Cadudal
,
R.
Georges
, and
A. A.
Vigasin
, “
Direct FTIR high resolution probe of small and medium size Arn(CO2)m van der Waals complexes formed in a slit supersonic expansion
,”
J. Mol. Spectrosc.
240
,
141
152
(
2006
).
14.
T. A.
Gartner
,
A. J.
Barclay
,
A. R. W.
McKellar
, and
N.
Moazzen-Ahmadi
, “
Symmetry breaking of the bending mode of CO2 in the presence of Ar
,”
Phys. Chem. Chem. Phys.
22
,
21488
21493
(
2020
).
15.
M.
Iida
,
Y.
Ohshima
, and
Y.
Endo
, “
Induced dipole moments and intermolecular force fields of rare gas-CO2 complexes studied by Fourier-transform microwave spectroscopy
,”
J. Phys. Chem.
97
,
357
362
(
1993
).
16.
T.
Konno
,
S.
Fukuda
, and
Y.
Ozaki
, “
Infrared spectroscopy of Kr–12C18O2: Change in the CO2 intramolecular potential by complex formation and isotope effect on the vibrationally averaged intermolecular geometry
,”
Chem. Phys. Lett.
414
,
331
335
(
2005
).
17.
T.
Gartner
,
S.
Ghebretnsae
,
A. R. W.
McKellar
, and
N.
Moazzen-Ahmadi
, “
Spectra of CO2–Kr: Intermolecular bend and symmetry breaking of the intramolecular CO2 bend
,”
Chem. Select
2022
,
e202202601
.
18.
A. J.
Barclay
,
A. R. W.
McKellar
,
C. M.
Western
, and
N.
Moazzen-Ahmadi
, “
New infrared spectra of CO2–Xe: Modelling Xe isotope effects, intermolecular bend and stretch, and symmetry breaking of the CO2 bend
,”
Mol. Phys.
119
,
e1919325
(
2021
).
19.
Y. J.
Xu
,
W.
Jager
, and
M. C. L.
Gerry
, “
Pulsed molecular beam microwave fourier transform spectroscopy of the van der Waals trimer Ar2-CO2
,”
J. Mol. Spectrosc.
157
,
132
140
(
1993
).
20.
J. M.
Sperhac
,
M. J.
Weida
, and
D. J.
Nesbitt
, “
Infrared spectroscopy of Ar2CO2 trimer: Vibrationally averaged structures, solvent shifts, and three‐body effects
,”
J. Chem. Phys.
104
,
2202
2213
(
1996
).
21.
A. J.
Barclay
,
A. R. W.
McKellar
, and
N.
Moazzen-Ahmadi
, “
Spectra of CO2-Rg2 and CO2-Rg-He trimers (Rg = Ne, Ar, Kr, and Xe): Intermolecular CO2 rock, vibrational shifts and three-body effects
,”
J. Chem. Phys.
157
,
204303
(
2022
).
22.
J.
Norooz Oliaee
,
B.
Brockelbank
, and
N.
Moazzen-Ahmadi
, “
Use of quantum correlated twin beams for cancellation of power fluctuations in a continuous wave optical parametric oscillator for high-resolution spectroscopy in the rapid scan
, in
The 25th Colloquium on High Resolution Molecular Spectroscopy
,
Helsinki, Finland
,
20–25 August 2017
.
23.
C. M.
Western
, “
PGOPHER, a program for simulating rotational structure version 8.0
,” University of Bristol Research Data Repository,
2014
.
24.
M. W.
Severson
, “
Quantum Monte Carlo simulations of Arn–CO2 clusters
,”
J. Chem. Phys.
109
,
1343
1351
(
1998
).
25.
M.
Böyükata
,
E.
Borges
,
J. C.
Belchior
, and
J. P.
Braga
, “
Structures and energetics of CO2-Arn clusters (n = 1–21) based on a non-rigid model
,”
Can. J. Chem.
85
,
47
55
(
2007
).
26.
K. V. J.
Jose
and
S. R.
Gadre
, “
An ab initio investigation on (CO2)n and CO2(Ar)m clusters: Geometries and IR spectra
,”
J. Chem. Phys.
128
,
124310
(
2008
).
27.
L.
Wang
and
D.
Xie
, “
Simulated annealing study on structures and energetics of CO2 in argon clusters
,”
Chin. J. Chem. Phys.
24
,
620
(
2011
).
28.
L.
Wang
and
D.
Xie
, “
Finite temperature path integral Monte Carlo simulations of structural and dynamical properties of ArN−CO2 clusters
,”
J. Chem. Phys.
137
,
074308
(
2012
).
29.
U. K.
Deiters
and
R. J.
Sadus
, “
Two-body interatomic potentials for He, Ne, Ar, Kr, and Xe from ab initio data
,”
J. Chem. Phys.
150
,
134504
(
2019
).
30.
R.
Chen
,
E.
Jiao
,
H.
Zhu
, and
D.
Xie
, “
A new ab initio potential energy surface and microwave and infrared spectra for the Ne–CO2 complex
,”
J. Chem. Phys.
133
,
104302
(
2010
).
31.
Y.
Cui
,
H.
Ran
, and
D.
Xie
, “
A new potential energy surface and predicted infrared spectra of the Ar–CO2 van der Waals complex
,”
J. Chem. Phys.
130
,
224311
(
2009
).
32.
R.
Chen
,
H.
Zhu
, and
D.
Xie
, “
Intermolecular potential energy surface, microwave and infrared spectra of the Kr–CO2 complex from ab initio calculations
,”
Chem. Phys. Lett.
511
,
229
234
(
2011
).
33.
M.
Chen
and
H.
Zhu
, “
Potential energy surface, microwave and infrared spectra of the Xe–CO2 complex from ab initio calculations
,”
J. Theor. Comput. Chem.
11
,
537
546
(
2012
).
34.
Z.
Wang
,
E.
Feng
,
C.
Zhang
, and
C.
Sun
, “
The potential energy surface and microwave spectra of the Xe–CO2 complex
,”
Chem. Phys. Lett.
619
,
14
17
(
2015
).
35.
H.
Li
and
R. J.
Le Roy
, “
Analytic three-dimensional ‘MLR’ potential energy surface for CO2–He, and its predicted microwave and infrared spectra
,”
Phys. Chem. Chem. Phys.
10
,
4128
4137
(
2008
).
36.
W. H.
Press
,
S. A.
Reukolsky
,
W. T.
Vetterling
, and
B. P.
Flannery
,
Numerical Recipes in FORTRAN
, 2nd ed. (
Cambridge University Press
,
1992
).
37.
K.
Mizuse
,
U.
Sato
,
Y.
Tobata
, and
Y.
Ohshima
, “
Rotational spectroscopy of the argon dimer by time-resolved Coulomb explosion imaging of rotational wave packets
,”
Phys. Chem. Chem. Phys.
24
,
11014
11022
(
2022
).
38.
P. E.
LaRocque
,
R. H.
Lipson
,
P. R.
Herman
, and
B. P.
Stoicheff
, “
Vacuum ultraviolet laser spectroscopy. IV. Spectra of Kr2 and constants of the ground and excited states
,”
J. Chem. Phys.
84
,
6627
6641
(
1986
).
39.
L.
Fredin
,
B.
Nelander
, and
G.
Ribbegård
, “
On the dimerization of carbon dioxide in nitrogen and argon matrices
,”
J. Mol. Spectrosc.
53
,
410
416
(
1974
).
40.
A. J.
Barclay
,
A. R. W.
McKellar
, and
N.
Moazzen-Ahmadi
, “
Infrared spectra of (CO2)2–Rg trimers, Rg = Ne, Ar, Kr, and Xe
,”
J. Mol. Spectrosc.
387
,
111673
(
2022
).

Supplementary Material

You do not currently have access to this content.