Deep eutectic solvent is a mixture of two or more components, mixed in a certain molar ratio, such that the mixture melts at a temperature lower than individual substances. In this work, we have used a combination of ultrafast vibrational spectroscopy and molecular dynamics simulations to investigate the microscopic structure and dynamics of a deep eutectic solvent (1:2 choline chloride: ethylene glycol) at and around the eutectic composition. In particular, we have compared the spectral diffusion and orientational relaxation dynamics of these systems with varying compositions. Our results show that although the time-averaged solvent structures around a dissolved solute are comparable across compositions, both the solvent fluctuations and solute reorientation dynamics show distinct differences. We show that these subtle changes in solute and solvent dynamics with changing compositions arise from the variations in the fluctuations of the different intercomponent hydrogen bonds.

1.
A. P.
Abbott
,
D.
Boothby
,
G.
Capper
,
D. L.
Davies
, and
R. K.
Rasheed
, “
Deep eutectic solvents formed between choline chloride and carboxylic acids: Versatile alternatives to ionic liquids
,”
J. Am. Chem. Soc.
126
,
9142
(
2004
).
2.
A. P.
Abbott
,
G.
Capper
,
D. L.
Davies
,
K. J.
McKenzie
, and
S. U.
Obi
, “
Solubility of metal oxides in deep eutectic solvents based on choline chloride
,”
J. Chem. Eng. Data
51
,
1280
(
2006
).
3.
A.
Abo-Hamad
,
M.
Hayyan
,
M. A.
AlSaadi
, and
M. A.
Hashim
, “
Potential applications of deep eutectic solvents in nanotechnology
,”
Chem. Eng. J.
273
,
551
(
2015
).
4.
V.
Alizadeh
,
D.
Geller
,
F.
Malberg
,
P. B.
Sánchez
,
A.
Padua
, and
B.
Kirchner
, “
Strong microheterogeneity in novel deep eutectic solvents
,”
ChemPhysChem
20
,
1786
(
2019
).
5.
D. A.
Alonso
,
A.
Baeza
,
R.
Chinchilla
,
G.
Guillena
,
I. M.
Pastor
, and
D. J.
Ramón
, “
Deep eutectic solvents: The organic reaction medium of the century
,”
Eur. J. Org. Chem.
2016
,
612
.
6.
Y.
Gu
and
F.
Jérôme
, “
Bio-based solvents: An emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry
,”
Chem. Soc. Rev.
42
,
9550
(
2013
).
7.
J. T.
Gorke
,
F.
Srienc
, and
R. J.
Kazlauskas
, “
Hydrolase-catalyzed biotransformations in deep eutectic solvents
,”
Chem. Commun.
2008
,
1235
.
8.
J. E.
Hallett
,
H. J.
Hayler
, and
S.
Perkin
, “
Nanolubrication in deep eutectic solvents
,”
Phys. Chem. Chem. Phys.
22
,
20253
(
2020
).
9.
D. V.
Wagle
,
H.
Zhao
, and
G. A.
Baker
, “
Deep eutectic solvents: Sustainable media for nanoscale and functional materials
,”
Acc. Chem. Res.
47
,
2299
(
2014
).
10.
A. P.
Abbott
,
G.
Capper
,
D. L.
Davies
,
R. K.
Rasheed
, and
V.
Tambyrajah
, “
Novel solvent properties of choline chloride/urea mixtures
,”
Chem. Commun.
2003
,
70
.
11.
A. R.
Harifi-Mood
and
R.
Buchner
, “
Density, viscosity, and conductivity of choline chloride + ethylene glycol as a deep eutectic solvent and its binary mixtures with dimethyl sulfoxide
,”
J. Mol. Liq.
225
,
689
(
2017
).
12.
S. S.
Hossain
and
A.
Samanta
, “
Solute rotation and translation dynamics in an ionic deep eutectic solvent based on choline chloride
,”
J. Phys. Chem. B
121
,
10556
(
2017
).
13.
T. H.
Ibrahim
,
M. A.
Sabri
,
N.
Abdel Jabbar
,
P.
Nancarrow
,
F. S.
Mjalli
, and
I.
AlNashef
, “
Thermal conductivities of choline chloride-based deep eutectic solvents and their mixtures with water: Measurement and estimation
,”
Molecules
25
,
3816
(
2020
).
14.
A.
González de Castilla
,
J. P.
Bittner
,
S.
Müller
,
S.
Jakobtorweihen
, and
I.
Smirnova
, “
Thermodynamic and transport properties modeling of deep eutectic solvents: A review on gE-models, equations of state, and molecular dynamics
,”
J. Chem. Eng. Data
65
,
943
(
2020
).
15.
B. B.
Hansen
,
S.
Spittle
,
B.
Chen
,
D.
Poe
,
Y.
Zhang
,
J. M.
Klein
 et al, “
Deep eutectic solvents: A review of fundamentals and applications
,”
Chem. Rev.
121
,
1232
(
2021
).
16.
L.
Percevault
,
A.
Jani
,
T.
Sohier
,
L.
Noirez
,
L.
Paquin
,
F.
Gauffre
, and
D.
Morineau
, “
Do deep eutectic solvents form uniform mixtures beyond molecular microheterogeneities?
,”
J. Phys. Chem. B
124
,
9126
(
2020
).
17.
V.
Alizadeh
,
F.
Malberg
,
A. A. H.
Pádua
, and
B.
Kirchner
, “
Are there magic compositions in deep eutectic solvents? Effects of composition and water content in choline chloride/ethylene glycol from ab initio molecular dynamics
,”
J. Phys. Chem. B
124
,
7433
(
2020
).
18.
A. H.
Turner
and
J. D.
Holbrey
, “
Investigation of glycerol hydrogen-bonding networks in choline chloride/glycerol eutectic-forming liquids using neutron diffraction
,”
Phys. Chem. Chem. Phys.
21
,
21782
(
2019
).
19.
R.
Stefanovic
,
M.
Ludwig
,
G. B.
Webber
,
R.
Atkin
, and
A. J.
Page
, “
Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor
,”
Phys. Chem. Chem. Phys.
19
,
3297
(
2017
).
20.
Y.
Zhang
,
D.
Poe
,
L.
Heroux
,
H.
Squire
,
B. W.
Doherty
,
Z.
Long
 et al, “
Liquid structure and transport properties of the deep eutectic solvent ethaline
,”
J. Phys. Chem. B
124
(
25
),
5251
5264
(
2020
).
21.
S.
Kaur
,
S.
Sharma
, and
H. K.
Kashyap
, “
Bulk and interfacial structures of reline deep eutectic solvent: A molecular dynamics study
,”
J. Chem. Phys.
147
,
194507
(
2017
).
22.
A.
Faraone
,
D. V.
Wagle
,
G. A.
Baker
,
E. C.
Novak
,
M.
Ohl
,
D.
Reuter
 et al, “
Glycerol hydrogen-bonding network dominates structure and collective dynamics in a deep eutectic solvent
,”
J. Phys. Chem. B
122
,
1261
(
2018
).
23.
S. S.
Hossain
and
A.
Samanta
, “
How do the hydrocarbon chain length and hydroxyl group position influence the solute dynamics in alcohol-based deep eutectic solvents?
,”
Phys. Chem. Chem. Phys.
20
,
24613
(
2018
).
24.
S.
Chatterjee
,
D.
Ghosh
,
T.
Haldar
,
P.
Deb
,
S. S.
Sakpal
,
S. H.
Deshmukh
 et al, “
Hydrocarbon chain-length dependence of solvation dynamics in alcohol-based deep eutectic solvents: A two-dimensional infrared spectroscopic investigation
,”
J. Phys. Chem. B
123
(
44
),
9355
9363
(
2019
).
25.
A.
Yadav
and
S.
Pandey
, “
Densities and viscosities of (choline chloride + urea) deep eutectic solvent and its aqueous mixtures in the temperature range 293.15 K to 363.15 K
,”
J. Chem. Eng. Data
59
,
2221
(
2014
).
26.
Q.
Zhang
,
K.
De Oliveira Vigier
,
S.
Royer
, and
F.
Jérôme
, “
Deep eutectic solvents: Syntheses, properties and applications
,”
Chem. Soc. Rev.
41
,
7108
(
2012
).
27.
Y.
Cui
,
J. C.
Rushing
,
S.
Seifert
,
N. M.
Bedford
, and
D. G.
Kuroda
, “
Molecularly heterogeneous structure of a nonionic deep eutectic solvent composed of N-methylacetamide and lauric acid
,”
J. Phys. Chem. B
123
,
3984
(
2019
).
28.
S.
Chatterjee
,
T.
Haldar
,
D.
Ghosh
, and
S.
Bagchi
, “
Electrostatic manifestation of micro-heterogeneous solvation structures in deep-eutectic solvents: A spectroscopic approach
,”
J. Phys. Chem. B
124
(
18
),
3709
(
2020
).
29.
Y.
Cui
and
D. G.
Kuroda
, “
Evidence of molecular heterogeneities in amide-based deep eutectic solvents
,”
J. Phys. Chem. A
122
,
1185
(
2018
).
30.
S.
Spittle
,
D.
Poe
,
B.
Doherty
,
C.
Kolodziej
,
L.
Heroux
,
M. A.
Haque
 et al, “
Evolution of microscopic heterogeneity and dynamics in choline chloride-based deep eutectic solvents
,”
Nat. Commun.
13
(
1
),
219
(
2022
).
31.
S.
Kaur
,
A.
Gupta
, and
H. K.
Kashyap
, “
Nanoscale spatial heterogeneity in deep eutectic solvents
,”
J. Phys. Chem. B
120
,
6712
(
2016
).
32.
E. S. C.
Ferreira
,
I. V.
Voroshylova
,
C. M.
Pereira
, and
M. N. D. S.
Cordeiro
, “
Improved force field model for the deep eutectic solvent ethaline: Reliable physicochemical properties
,”
J. Phys. Chem. B
120
,
10124
(
2016
).
33.
S.
Kaur
,
A.
Malik
, and
H. K.
Kashyap
, “
Anatomy of microscopic structure of ethaline deep eutectic solvent decoded through molecular dynamics simulations
,”
J. Phys. Chem. B
123
,
8291
(
2019
).
34.
O. S.
Hammond
,
D. T.
Bowron
, and
K. J.
Edler
, “
Liquid structure of the choline chloride-urea deep eutectic solvent (reline) from neutron diffraction and atomistic modelling
,”
Green Chem.
18
,
2736
(
2016
).
35.
V. F.
Sears
, “
Neutron scattering lengths and cross sections
,”
Neutron News
3
,
26
(
1992
).
36.
Y.
Cui
,
K. D.
Fulfer
,
J.
Ma
,
T. K.
Weldeghiorghis
, and
D. G.
Kuroda
, “
Solvation dynamics of an ionic probe in choline chloride-based deep eutectic solvents
,”
Phys. Chem. Chem. Phys.
18
,
31471
(
2016
).
37.
D. V.
Wagle
,
C. A.
Deakyne
, and
G. A.
Baker
, “
Quantum chemical insight into the interactions and thermodynamics present in choline chloride based deep eutectic solvents
,”
J. Phys. Chem. B
120
,
6739
(
2016
).
38.
S.
Chatterjee
,
S. H.
Deshmukh
, and
S.
Bagchi
, “
Does viscosity drive the dynamics in an alcohol-based deep eutectic solvent?
,”
J. Phys. Chem. B
126
(
41
),
8331
8337
(
2022
).
39.
S. S.
Sakpal
,
S. H.
Deshmukh
,
S.
Chatterjee
,
D.
Ghosh
, and
S.
Bagchi
, “
Transition of a deep eutectic solution to aqueous solution: A dynamical perspective of the dissolved solute
,”
J. Phys. Chem. Lett.
12
(
36
),
8784
8789
(
2021
).
40.
E. L.
Smith
,
A. P.
Abbott
, and
K. S.
Ryder
, “
Deep eutectic solvents (DESs) and their applications
,”
Chem. Rev.
114
,
11060
(
2014
).
41.
S. A.
Yamada
,
S. T.
Hung
,
W. H.
Thompson
,
M. D.
Fayer
,
M.
BA
,
P.
HJ
 et al, “
Effects of pore size on water dynamics in mesoporous silica
,”
J. Chem. Phys.
152
(
15
),
154704
(
2020
);
[PubMed]
A. M.
Burke
,
J. P.
Hanrahan
,
D. A.
Healy
,
J. R.
Sodeau
,
J. D.
Holmes
, and
M. A.
Morris
, “
Large pore bi-functionalised mesoporous silica for metal ion pollution treatment
,”
J. Hazard. Mater.
164
,
229
(
2009
).
[PubMed]
42.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1
,
19
(
2015
).
43.
B.
Doherty
and
O.
Acevedo
, “
OPLS force field for choline chloride-based deep eutectic solvents
,”
J. Phys. Chem. B
122
,
9982
(
2018
).
44.
K.
Yue
,
B.
Doherty
, and
O.
Acevedo
, “
Comparison between ab initio molecular dynamics and OPLS-based force fields for ionic liquid solvent organization
,”
J. Phys. Chem. B
126
(
21
),
3908
3919
(
2022
).
45.
J.
Baz
,
C.
Held
,
J.
Pleiss
, and
N.
Hansen
, “
Thermophysical properties of glyceline–water mixtures investigated by molecular modelling
,”
Phys. Chem. Chem. Phys.
21
(
12
),
6467
6476
(
2019
).
46.
A.
Chaumont
,
E.
Engler
, and
R.
Schurhammer
, “
Is charge scaling really mandatory when developing fixed charge atomistic force fields for deep eutectic solvents?
,”
J. Phys. Chem. B
124
,
7239
(
2020
).
47.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
, “
Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids
,”
J. Am. Chem. Soc.
118
,
11225
(
1996
).
48.
S.
Gehrke
and
B.
Kirchner
, “
Robustness of the hydrogen bond and ion pair dynamics in ionic liquids to different parameters from the reactive flux method
,”
J. Chem. Eng. Data
65
(
3
),
116
1158
(
2020
).
49.
D. C.
Rapaport
, “
Hydrogen bonds in water: Network organization and lifetimes
,”
Mol. Phys.
50
,
1151
(
1983
).
50.
A.
Luzar
and
D.
Chandler
, “
Effect of environment on hydrogen bond dynamics in liquid water
,”
Phys. Rev. Lett.
76
,
928
(
1996
).
51.
M.
Shen
,
S.
Keten
, and
R. M.
Lueptow
, “
Rejection mechanisms for contaminants in polyamide reverse osmosis membranes
,”
J. Membr. Sci.
509
,
36
47
(
2016
).
52.
M.
Brehm
and
B.
Kirchner
, “
TRAVIS-a free analyzer and visualizer for Monte Carlo and molecular dynamics trajectories
,”
J. Chem. Inf. Model.
51
,
2007
(
2011
).
53.
P.
Deb
,
T.
Haldar
,
S. M.
Kashid
,
S.
Banerjee
,
S.
Chakrabarty
, and
S.
Bagchi
, “
Correlating nitrile IR frequencies to local electrostatics quantifies noncovalent interactions of peptides and proteins
,”
J. Phys. Chem. B
120
,
4034
(
2016
).
54.
T.
Haldar
,
S.
Chatterjee
,
M. N.
Alam
,
P.
Maity
, and
S.
Bagchi
, “
Blue fluorescence of cyano-tryptophan predicts local electrostatics and hydrogen bonding in biomolecules
,”
J. Phys. Chem. B
126
,
10732
(
2022
).
55.
S.
Bagchi
,
S. D.
Fried
, and
S. G.
Boxer
, “
A solvatochromic model calibrates nitriles’ vibrational frequencies to electrostatic fields
,”
J. Am. Chem. Soc.
134
,
10373
(
2012
).
56.
H.
Torii
, “
Unified electrostatic understanding on the solvation-induced changes in the CN stretching frequency and the NMR chemical shifts of a nitrile
,”
J. Phys. Chem. A
120
,
7137
(
2016
).
57.
M.
Maj
,
C.
Ahn
,
D.
Kossowska
,
K.
Park
,
K.
Kwak
, and
H.
Han
,
M.
Cho
, “
β-Isocyanoalanine as an IR probe: Comparison of vibrational dynamics between isonitrile and nitrile-derivatized IR probes
,”
Phys. Chem. Chem. Phys.
17
,
11770
(
2015
).
58.
R.
Yuan
,
C.
Yan
,
A.
Tamimi
, and
M. D.
Fayer
, “
Molecular anion hydrogen bonding dynamics in aqueous solution
,”
J. Phys. Chem. B
119
(
42
),
13407
13415
(
2015
).
59.
A.
Tamimi
and
M. D.
Fayer
, “
Ionic liquid dynamics measured with 2D IR and IR pump–probe experiments on a linear anion and the influence of potassium cations
,”
J. Phys. Chem. B
120
(
26
),
5842
5854
(
2016
).
60.
S. A.
Yamada
,
H. E.
Bailey
,
A.
Tamimi
,
C.
Li
, and
M. D.
Fayer
, “
Dynamics in a room-temperature ionic liquid from the cation perspective: 2D IR vibrational echo spectroscopy
,”
J. Am. Chem. Soc.
139
(
6
),
2408
2420
(
2017
).
61.
S. A.
Yamada
,
W. H.
Thompson
, and
M. D.
Fayer
, “
Water-anion hydrogen bonding dynamics: Ultrafast IR experiments and simulations
,”
J. Chem. Phys.
146
,
234501
(
2017
).
62.
O. S.
Hammond
,
D. T.
Bowron
, and
K. J.
Edler
, “
The effect of water upon deep eutectic solvent nanostructure: An unusual transition from ionic mixture to aqueous solution
,”
Angew. Chem., Int. Ed.
56
,
9782
(
2017
).
63.
S.
Sarkar
,
A.
Maity
, and
R.
Chakrabarti
, “
Microscopic structural features of water in aqueous–reline mixtures of varying compositions
,”
Phys. Chem. Chem. Phys.
23
,
3779
(
2021
).
64.
J. Y.
Shin
,
S. A.
Yamada
, and
M. D.
Fayer
, “
Dynamics of a room temperature ionic liquid in supported ionic liquid membranes vs the bulk liquid: 2D IR and polarized IR pump–probe experiments
,”
J. Am. Chem. Soc.
139
,
311
(
2017
).
65.
C. H.
Giammanco
,
S. A.
Yamada
,
P. L.
Kramer
,
A.
Tamimi
, and
M. D.
Fayer
, “
Structural and rotational dynamics of carbon dioxide in 1-Alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids: The effect of chain length
,”
J. Phys. Chem. B
120
,
6698
(
2016
).
66.
S. A.
Yamada
,
J. Y.
Shin
,
W. H.
Thompson
, and
M. D.
Fayer
, “
Water dynamics in nanoporous silica: Ultrafast vibrational spectroscopy and molecular dynamics simulations
,”
J. Phys. Chem. C
123
,
5790
(
2019
).
67.
D. E.
Moilanen
,
I. R.
Piletic
, and
M. D.
Fayer
, “
Water dynamics in Nafion fuel cell membranes: The effects of confinement and structural changes on the hydrogen bond network
,”
J. Phys. Chem. C
111
,
8884
(
2007
).
68.
S. M.
Kashid
,
G. Y.
Jin
,
S.
Chakrabarty
,
Y. S.
Kim
, and
S.
Bagchi
, “
Two-dimensional infrared spectroscopy reveals cosolvent-composition-dependent crossover in intermolecular hydrogen-bond dynamics
,”
J. Phys. Chem. Lett.
8
,
1604
(
2017
).
69.
D. E.
Moilanen
,
E. E.
Fenn
,
Y.-S.
Lin
,
J. L.
Skinner
,
B.
Bagchi
, and
M. D.
Fayer
, “
Water inertial reorientation: Hydrogen bond strength and the angular potential
,”
Proc. Natl. Acad. Sci. U. S. A.
105
(
14
),
5295
5300
(
2008
).
70.
D. M.
Wilkins
,
D. E.
Manolopoulos
,
S.
Pipolo
,
D.
Laage
, and
J. T.
Hynes
, “
Nuclear Quantum effects in water reorientation and hydrogen-bond dynamics
,”
J. Phys. Chem. Lett.
8
(
12
),
2602
2607
(
2017
).

Supplementary Material

You do not currently have access to this content.