Intra-band transitions in colloidal quantum dots (QDs) are promising for opto-electronic applications in the mid-IR spectral region. However, such intra-band transitions are typically very broad and spectrally overlapping, making the study of individual excited states and their ultrafast dynamics very challenging. Here, we present the first full spectrum two-dimensional continuum infrared (2D CIR) spectroscopy study of intrinsically n-doped HgSe QDs, which exhibit mid-infrared intra-band transitions in their ground state. The obtained 2D CIR spectra reveal that underneath the broad absorption line shape of ∼500 cm−1, the transitions exhibit surprisingly narrow intrinsic linewidths with a homogeneous broadening of 175–250 cm−1. Furthermore, the 2D IR spectra are remarkably invariant, with no sign of spectral diffusion dynamics at waiting times up to 50 ps. Accordingly, we attribute the large static inhomogeneous broadening to the distribution of size and doping level of the QDs. In addition, the two higher-lying P-states of the QDs can be clearly identified in the 2D IR spectra along the diagonal with a cross-peak. However, there is no indication of cross-peak dynamics indicating that, despite the strong spin–orbit coupling in HgSe, transitions between the P-states must be longer than our maximum waiting time of 50 ps. This study illustrates a new frontier of 2D IR spectroscopy enabling the study of intra-band carrier dynamics in nanocrystalline materials across the entire mid-infrared spectrum.

1.
C.
Livache
,
B.
Martinez
,
N.
Goubet
,
C.
Gréboval
,
J.
Qu
,
A.
Chu
,
S.
Royer
,
S.
Ithurria
,
M. G.
Silly
,
B.
Dubertret
, and
E.
Lhuillier
,
Nat. Commun.
10
(
1
),
2125
(
2019
).
2.
Z.
Deng
,
K. S.
Jeong
, and
P.
Guyot-Sionnest
,
ACS Nano
8
(
11
),
11707
11714
(
2014
).
3.
X.
Shen
,
J. C.
Peterson
, and
P.
Guyot-Sionnest
,
ACS Nano
16
(
5
),
7301
7308
(
2022
).
4.
J.
Qu
,
M.
Weis
,
E.
Izquierdo
,
S. G.
Mizrahi
,
A.
Chu
,
C.
Dabard
,
C.
Gréboval
,
E.
Bossavit
,
Y.
Prado
,
E.
Péronne
,
S.
Ithurria
,
G.
Patriarche
,
M. G.
Silly
,
G.
Vincent
,
D.
Boschetto
, and
E.
Lhuillier
,
Nat. Photonics
16
(
1
),
38
44
(
2022
).
5.
A.
Kamath
,
C.
Melnychuk
, and
P.
Guyot-Sionnest
,
J. Am. Chem. Soc.
143
(
46
),
19567
19575
(
2021
).
6.
C.
Gréboval
,
A.
Chu
,
N.
Goubet
,
C.
Livache
,
S.
Ithurria
, and
E.
Lhuillier
,
Chem. Rev.
121
(
7
),
3627
3700
(
2021
).
7.
E.
Tournié
and
L.
Cerutti
,
Mid-Infrared Optoelectronics: Materials, Devices, and Applications
(
Woodhead Publishing is an Imprint of Elsevier
,
Duxford, UK/Cambridge, MA
,
2020
).
8.
M.
Shim
and
P.
Guyot-Sionnest
,
Phys. Rev. B
64
(
24
),
245342
(
2001
).
9.
E.
Cassette
,
J. C.
Dean
, and
G. D.
Scholes
,
Small
12
(
16
),
2234
2244
(
2016
).
10.
W.
Zhao
,
Z.
Qin
,
C.
Zhang
,
G.
Wang
,
X.
Huang
,
B.
Li
,
X.
Dai
, and
M.
Xiao
,
J. Phys. Chem. Lett.
10
(
6
),
1251
1258
(
2019
).
11.
T.
Stoll
,
F.
Branchi
,
J.
Réhault
,
F.
Scotognella
,
F.
Tassone
,
I.
Kriegel
, and
G.
Cerullo
,
J. Phys. Chem. Lett.
8
(
10
),
2285
2290
(
2017
).
12.
J. M.
Richter
,
F.
Branchi
,
F.
Valduga De Almeida Camargo
,
B.
Zhao
,
R. H.
Friend
,
G.
Cerullo
, and
F.
Deschler
,
Nat. Commun.
8
(
1
),
376
(
2017
).
13.
E.
Cassette
,
S.
Pedetti
,
B.
Mahler
,
S.
Ithurria
,
B.
Dubertret
, and
G. D.
Scholes
,
Phys. Chem. Chem. Phys.
19
(
12
),
8373
8379
(
2017
).
14.
H.
Seiler
,
S.
Palato
, and
P.
Kambhampati
,
J. Chem. Phys.
149
(
7
),
074702
(
2018
).
15.
S.
Palato
,
H.
Seiler
,
P.
Nijjar
,
O.
Prezhdo
, and
P.
Kambhampati
,
Proc. Natl. Acad. Sci. U. S. A.
117
(
22
),
11940
11946
(
2020
).
16.
S. D.
Park
,
D.
Baranov
,
J.
Ryu
,
B.
Cho
,
A.
Halder
,
S.
Seifert
,
S.
Vajda
, and
D. M.
Jonas
,
Nano Lett.
17
(
2
),
762
771
(
2017
).
17.
G. B.
Griffin
,
S.
Ithurria
,
D. S.
Dolzhnikov
,
A.
Linkin
,
D. V.
Talapin
, and
G. S.
Engel
,
J. Chem. Phys.
138
(
1
),
014705
(
2013
).
18.
S. T.
Roberts
,
K.
Ramasesha
, and
A.
Tokmakoff
,
Acc. Chem. Res.
42
(
9
),
1239
1249
(
2009
).
19.
D. E.
Moilanen
,
D.
Wong
,
D. E.
Rosenfeld
,
E. E.
Fenn
, and
M. D.
Fayer
,
Proc. Natl. Acad. Sci. U. S. A.
106
(
2
),
375
380
(
2009
).
20.
C. R.
Baiz
,
P. L.
Mcrobbie
,
J. M.
Anna
,
E.
Geva
, and
K. J.
Kubarych
,
Acc. Chem. Res.
42
(
9
),
1395
1404
(
2009
).
21.
J. P.
Kraack
,
D.
Lotti
, and
P.
Hamm
,
J. Chem. Phys.
142
(
21
),
212413
(
2015
).
22.
Z.
Ganim
,
H. S.
Chung
,
A. W.
Smith
,
L. P.
Deflores
,
K. C.
Jones
, and
A.
Tokmakoff
,
Acc. Chem. Res.
41
(
3
),
432
441
(
2008
).
23.
A.
Ghosh
,
J. S.
Ostrander
, and
M. T.
Zanni
,
Chem. Rev.
117
(
16
),
10726
10759
(
2017
).
24.
A. T.
Krummel
and
M. T.
Zanni
,
J. Phys. Chem. B
110
(
28
),
13991
14000
(
2006
).
25.
Ł.
Szyc
,
M.
Yang
,
E. T. J.
Nibbering
, and
T.
Elsaesser
,
Angew. Chem., Int. Ed.
49
(
21
),
3598
3610
(
2010
).
26.
J.
Zheng
,
K.
Kwak
, and
M. D.
Fayer
,
Acc. Chem. Res.
40
(
1
),
75
83
(
2007
).
27.
P.
Hamm
and
M. T.
Zanni
,
Concepts and Methods of 2D Infrared Spectroscopy
(
Cambridge University Press
,
Cambridge, NY
,
2011
).
28.
M. D.
Fayer
,
Ultrafast Infrared and Raman Spectroscopy
(
Marcel Dekker
,
New York
,
2001
).
29.
M.
Cho
,
Chem. Rev.
108
(
4
),
1331
1418
(
2008
).
30.
P. B.
Petersen
and
A.
Tokmakoff
,
Opt. Lett.
35
(
12
),
1962
(
2010
).
31.
C.
Calabrese
,
A. M.
Stingel
,
L.
Shen
, and
P. B.
Petersen
,
Opt. Lett.
37
(
12
),
2265
2267
(
2012
).
32.
A. M.
Stingel
and
P. B.
Petersen
,
J. Phys. Chem. B
120
(
41
),
10768
10779
(
2016
).
33.
M.
Thämer
,
L.
De Marco
,
K.
Ramasesha
,
A.
Mandal
, and
A.
Tokmakoff
,
Science
350
(
6256
),
78
82
(
2015
).
34.
J. D.
Gaynor
,
T. L.
Courtney
,
M.
Balasubramanian
, and
M.
Khalil
,
Opt. Lett.
41
(
12
),
2895
(
2016
).
35.
A. M.
Stingel
,
C.
Calabrese
, and
P. B.
Petersen
,
J. Phys. Chem. B
117
(
49
),
15714
15719
(
2013
).
36.
L.
De Marco
,
K.
Ramasesha
, and
A.
Tokmakoff
,
J. Phys. Chem. B
117
(
49
),
15319
15327
(
2013
).
37.
A. M.
Stingel
and
P. B.
Petersen
,
J. Chem. Phys.
155
(
10
),
104202
(
2021
).
38.
L. K.
Sagar
,
W.
Walravens
,
J.
Maes
,
P.
Geiregat
, and
Z.
Hens
,
J. Phys. Chem. C
121
(
25
),
13816
13822
(
2017
).
39.
Z.
Deng
and
P.
Guyot-Sionnest
,
ACS Nano
10
(
2
),
2121
2127
(
2016
).
40.
M. H.
Hudson
,
M.
Chen
,
V.
Kamysbayev
,
E. M.
Janke
,
X.
Lan
,
G.
Allan
,
C.
Delerue
,
B.
Lee
,
P.
Guyot-Sionnest
, and
D. V.
Talapin
,
ACS Nano
12
(
9
),
9397
9404
(
2018
).
41.
C.
Melnychuk
and
P.
Guyot-Sionnest
,
ACS Nano
13
(
9
),
10512
10519
(
2019
).
42.
J.
Lim
,
Y. C.
Choi
,
D.
Choi
,
I.-Y.
Chang
,
K.
Hyeon-Deuk
,
K. S.
Jeong
,
K.
Kwak
, and
M.
Cho
,
Matter
4
(
3
),
1072
1086
(
2021
).
43.
J.
De Roo
,
N.
Yazdani
,
E.
Drijvers
,
A.
Lauria
,
J.
Maes
,
J. S.
Owen
,
I.
Van Driessche
,
M.
Niederberger
,
V.
Wood
,
J. C.
Martins
,
I.
Infante
, and
Z.
Hens
,
Chem. Mater.
30
(
15
),
5485
5492
(
2018
).
44.
D.
Bozyigit
,
N.
Yazdani
,
M.
Yarema
,
O.
Yarema
,
W. M. M.
Lin
,
S.
Volk
,
K.
Vuttivorakulchai
,
M.
Luisier
,
F.
Juranyi
, and
V.
Wood
,
Nature
531
(
7596
),
618
622
(
2016
).
45.
S. C.
Boehme
,
S. T.
Brinck
,
J.
Maes
,
N.
Yazdani
,
F.
Zapata
,
K.
Chen
,
V.
Wood
,
J. M.
Hodgkiss
,
Z.
Hens
,
P.
Geiregat
, and
I.
Infante
,
Nano Lett.
20
(
3
),
1819
1829
(
2020
).
46.
A.
Pandey
and
P.
Guyot-Sionnest
,
Science
322
(
5903
),
929
932
(
2008
).
47.
R. R.
Cooney
,
S. L.
Sewall
,
K. E. H.
Anderson
,
E. A.
Dias
, and
P.
Kambhampati
,
Phys. Rev. Lett.
98
(
17
),
177403
(
2007
).
48.
J. M.
Pietryga
,
Y.-S.
Park
,
J.
Lim
,
A. F.
Fidler
,
W. K.
Bae
,
S.
Brovelli
, and
V. I.
Klimov
,
Chem. Rev.
116
(
18
),
10513
10622
(
2016
).
49.
V. I.
Klimov
,
J. Phys. Chem. B
104
(
26
),
6112
6123
(
2000
).
50.
H.
Kepa
,
T.
Giebultowicz
,
B.
Buras
,
B.
Lebech
, and
K.
Clausen
,
Phys. Scr.
25
(
6
),
807
809
(
1982
).

Supplementary Material

You do not currently have access to this content.