Efficient representations of the Hamiltonian, such as double factorization, drastically reduce the circuit depth or the number of repetitions in error corrected and noisy intermediate-scale quantum (NISQ) algorithms for chemistry. We report a Lagrangian-based approach for evaluating relaxed one- and two-particle reduced density matrices from double factorized Hamiltonians, unlocking efficiency improvements in computing the nuclear gradient and related derivative properties. We demonstrate the accuracy and feasibility of our Lagrangian-based approach to recover all off-diagonal density matrix elements in classically simulated examples with up to 327 quantum and 18 470 total atoms in QM/MM simulations with modest-sized quantum active spaces. We show this in the context of the variational quantum eigensolver in case studies, such as transition state optimization, ab initio molecular dynamics simulation, and energy minimization of large molecular systems.

1.
D. M.
Bishop
and
M.
Randič
, “
Ab initio calculation of harmonic force constants
,”
J. Chem. Phys.
44
,
2480
(
1966
).
2.
P.
Pulay
, “
Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules
,”
Mol. Phys.
17
,
197
(
1969
).
3.
Y.
Yamaguchi
,
Y.
Osamura
,
J. D.
Goddard
, and
H. F.
Schaefer
,
A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory
(
Oxford University Press
,
Oxford
,
1994
).
4.
P.
Pulay
, “
Analytical derivatives, forces, force constants, molecular geometries, and related response properties in electronic structure theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
,
169
(
2013
).
5.
F.
Jensen
,
Introduction to Computational Chemistry
(
John Wiley & Sons
,
2017
).
6.
N. C.
Handy
and
H. F.
Schaefer
, “
On the evaluation of analytic energy derivatives for correlated wave functions
,”
J. Chem. Phys.
81
,
5031
(
1984
).
7.
A.
Peruzzo
,
J.
McClean
,
P.
Shadbolt
,
M. H.
Yung
,
X. Q.
Zhou
,
P. J.
Love
,
A.
Aspuru-Guzik
, and
J. L.
O’Brien
, “
A variational eigenvalue solver on a photonic quantum processor
,”
Nat. Commun.
5
,
4213
(
2014
).
8.
J. R.
McClean
,
J.
Romero
,
R.
Babbush
, and
A.
Aspuru-Guzik
, “
The theory of variational hybrid quantum-classical algorithms
,”
New J. Phys.
18
,
023023
(
2016
).
9.
J.
Romero
,
R.
Babbush
,
J. R.
McClean
,
C.
Hempel
,
P. J.
Love
, and
A.
Aspuru-Guzik
, “
Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz
,”
Quantum Sci. Technol.
4
,
014008
(
2018
).
10.
J. E.
Rice
,
R. D.
Amos
,
N. C.
Handy
,
T. J.
Lee
, and
H. F.
Schaefer
, “
The analytic configuration interaction gradient method: Application to the cyclic and open isomers of the S3 molecule
,”
J. Chem. Phys.
85
,
963
(
1986
).
11.
T. U.
Helgaker
, “
Simple derivation of the potential energy gradient for an arbitrary electronic wave function
,”
Int. J. Quantum Chem.
21
,
939
(
1982
).
12.
P. G.
Szalay
, “
Analytic energy derivatives for coupled-cluster methods describing excited states: General formulas and comparison of computational costs
,”
Int. J. Quantum Chem.
55
,
151
(
1995
).
13.
T.
Helgaker
,
P.
Jorgensen
, and
J.
Olsen
,
Molecular Electronic-Structure Theory
(
John Wiley & Sons
,
2013
).
14.
S. V.
Levchenko
,
T.
Wang
, and
A. I.
Krylov
, “
Analytic gradients for the spin-conserving and spin-flipping equation-of-motion coupled-cluster models with single and double substitutions
,”
J. Chem. Phys.
122
,
224106
(
2005
).
15.
T. E.
O’Brien
,
B.
Senjean
,
R.
Sagastizabal
,
X.
Bonet-Monroig
,
A.
Dutkiewicz
,
F.
Buda
,
L.
DiCarlo
, and
L.
Visscher
, “
Calculating energy derivatives for quantum chemistry on a quantum computer
,”
npj Quantum Inf.
5
,
113
(
2019
).
16.
R. M.
Parrish
,
E. G.
Hohenstein
,
P. L.
McMahon
, and
T. J.
Martinez
, “
Hybrid quantum/classical derivative theory: Analytical gradients and excited-state dynamics for the multistate contracted variational quantum eigensolver
,” arXiv:1906.08728 (
2019
).
17.
R. M.
Parrish
,
G.-L. R.
Anselmetti
, and
C.
Gogolin
, “
Analytical ground- and excited-state gradients for molecular electronic structure theory from hybrid Quantum/Classical methods
,” arXiv:2110.05040 (
2021
).
18.
K.
Omiya
,
Y. O.
Nakagawa
,
S.
Koh
,
W.
Mizukami
,
Q.
Gao
, and
T.
Kobayashi
, “
Analytical energy gradient for state-averaged orbital-optimized variational quantum eigensolvers and its application to a photochemical reaction
,”
J. Chem. Theory Comput.
18
,
741
(
2022
).
19.
S.
Yalouz
,
E.
Koridon
,
B.
Senjean
,
B.
Lasorne
,
F.
Buda
, and
L.
Visscher
, “
Analytical nonadiabatic couplings and gradients within the state-averaged orbital-optimized variational quantum eigensolver
,”
J. Chem. Theory Comput.
18
,
776
(
2022
).
20.
T. E.
O’Brien
,
M.
Streif
,
N. C.
Rubin
,
R.
Santagati
,
Y.
Su
,
W. J.
Huggins
,
J. J.
Goings
,
N.
Moll
,
E.
Kyoseva
,
M.
Degroote
,
C. S.
Tautermann
,
J.
Lee
,
D. W.
Berry
,
N.
Wiebe
, and
R.
Babbush
, “
Efficient quantum computation of molecular forces and other energy gradients
,”
Phys. Rev. Research
4
,
043210
(
2022
).
21.
I. D.
Kivlichan
,
J.
McClean
,
N.
Wiebe
,
C.
Gidney
,
A.
Aspuru-Guzik
,
G. K.-L.
Chan
, and
R.
Babbush
, “
Quantum simulation of electronic structure with linear depth and connectivity
,”
Phys. Rev. Lett.
120
,
110501
(
2018
).
22.
D. W.
Berry
,
C.
Gidney
,
M.
Motta
,
J. R.
McClean
, and
R.
Babbush
, “
Qubitization of arbitrary basis quantum chemistry leveraging sparsity and low rank factorization
,”
Quantum
3
,
208
(
2019
).
23.
W. J.
Huggins
,
J. R.
McClean
,
N. C.
Rubin
,
Z.
Jiang
,
N.
Wiebe
,
K. B.
Whaley
, and
R.
Babbush
, “
Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers
,”
npj Quantum Inf
7
,
23
(
2021
).
24.
M.
Motta
,
E.
Ye
,
J. R.
McClean
,
Z.
Li
,
A. J.
Minnich
,
R.
Babbush
, and
G. K.-L.
Chan
, “
Low rank representations for quantum simulation of electronic structure
,”
npj Quantum Inf.
7
,
83
(
2021
).
25.
J.
Cohn
,
M.
Motta
, and
R. M.
Parrish
, “
Quantum filter diagonalization with compressed double-factorized Hamiltonians
,”
PRX Quantum
2
,
040352
(
2021
).
26.
B.
Peng
and
K.
Kowalski
, “
Highly efficient and scalable compound decomposition of two-electron integral tensor and its application in coupled cluster calculations
,”
J. Chem. Theory Comput.
13
,
4179
(
2017
).
27.
M.
Motta
,
J.
Shee
,
S.
Zhang
, and
G. K.-L.
Chan
, “
Efficient ab initio auxiliary-field quantum Monte Carlo calculations in Gaussian bases via low-rank tensor decomposition
,”
J. Chem. Theory Comput.
15
,
3510
(
2019
).
28.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
, “
Integral approximations for LCAO-SCF calculations
,”
Chem. Phys. Lett.
213
,
514
(
1993
).
29.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
, “
Use of approximate integrals in ab initio theory. An application in MP2 energy calculations
,”
Chem. Phys. Lett.
208
,
359
(
1993
).
30.
N. H. F.
Beebe
and
J.
Linderberg
, “
Simplifications in the generation and transformation of two-electron integrals in molecular calculations
,”
Int. J. Quantum Chem.
12
,
683
(
1977
).
31.
I.
Røeggen
and
E.
Wisløff-Nilssen
, “
On the Beebe-Linderberg two-electron integral approximation
,”
Chem. Phys. Lett.
132
,
154
(
1986
).
32.
H.
Koch
,
A.
Sánchez de Merás
, and
T. B.
Pedersen
, “
Reduced scaling in electronic structure calculations using Cholesky decompositions
,”
J. Chem. Phys.
118
,
9481
(
2003
).
33.
R. A.
Friesner
, “
Solution of the Hartree–Fock equations by a pseudospectral method: Application to diatomic molecules
,”
J. Chem. Phys.
85
,
1462
(
1986
).
34.
R. A.
Friesner
, “
Solution of the Hartree–Fock equations for polyatomic molecules by a pseudospectral method
,”
J. Chem. Phys.
86
,
3522
(
1987
).
35.
R. A.
Friesner
, “
New methods for electronic structure calculations on large molecules
,”
Annu. Rev. Phys. Chem.
42
,
341
(
1991
).
36.
R.
Izsák
and
F.
Neese
, “
An overlap fitted chain of spheres exchange method
,”
J. Chem. Phys.
135
,
144105
(
2011
).
37.
E. G.
Hohenstein
,
R. M.
Parrish
, and
T. J.
Martínez
, “
Tensor hypercontraction density fitting. I. Quartic scaling second- and third-order Møller-Plesset perturbation theory
,”
J. Chem. Phys.
137
,
044103
(
2012
).
38.
R. M.
Parrish
,
E. G.
Hohenstein
,
T. J.
Martínez
, and
C. D.
Sherrill
, “
Tensor hypercontraction. II. Least-squares renormalization
,”
J. Chem. Phys.
137
,
224106
(
2012
).
39.
R. M.
Parrish
,
E. G.
Hohenstein
,
N. F.
Schunck
,
C. D.
Sherrill
, and
T. J.
Martínez
, “
Exact tensor hypercontraction: A universal technique for the resolution of matrix elements of local finite-range N-body potentials in many-body quantum problems
,”
Phys. Rev. Lett.
111
,
132505
(
2013
).
40.
R. A.
Distasio
,
R. P.
Steele
,
Y. M.
Rhee
,
Y.
Shao
, and
M.
Head-Gordon
, “
An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: Application to alanine tetrapeptide conformational analysis
,”
J. Comput. Chem.
28
,
839
(
2007
).
41.
J.
Boström
,
F.
Aquilante
,
T. B.
Pedersen
, and
R.
Lindh
, “
Analytical gradients of Hartree–Fock exchange with density fitting approximations
,”
J. Chem. Theory Comput.
9
,
204
(
2012
).
42.
M. G.
Delcey
,
T. B.
Pedersen
,
F.
Aquilante
, and
R.
Lindh
, “
Analytical gradients of the state-average complete active space self-consistent field method with density fitting
,”
J. Chem. Phys.
143
,
044110
(
2015
).
43.
F.
Aquilante
,
R.
Lindh
, and
T. B.
Pedersen
, “
Analytic derivatives for the Cholesky representation of the two-electron integrals
,”
J. Chem. Phys.
129
,
034106
(
2008
).
44.
F.
Aquilante
,
L.
Gagliardi
,
T. B.
Pedersen
, and
R.
Lindh
, “
Atomic Cholesky decompositions: A route to unbiased auxiliary basis sets for density fitting approximation with tunable accuracy and efficiency
,”
J. Chem. Phys.
130
,
154107
(
2009
).
45.
J.
Boström
,
V.
Veryazov
,
F.
Aquilante
,
T.
Bondo Pedersen
, and
R.
Lindh
, “
Analytical gradients of the second-order Møller-Plesset energy using Cholesky decompositions
,”
Int. J. Quantum Chem.
114
,
321
(
2013
).
46.
D. J.
Thouless
, “
Stability conditions and nuclear rotations in the Hartree-Fock theory
,”
Nucl. Phys.
21
,
225
(
1960
).
47.
D.
Wecker
,
M. B.
Hastings
,
N.
Wiebe
,
B. K.
Clark
,
C.
Nayak
, and
M.
Troyer
, “
Solving strongly correlated electron models on a quantum computer
,”
Phys. Rev. A
92
,
062318
(
2015
).
48.
M.
Reck
,
A.
Zeilinger
,
H. J.
Bernstein
, and
P.
Bertani
, “
Experimental realization of any discrete unitary operator
,”
Phys. Rev. Lett.
73
,
58
(
1994
).
49.
S.
Seritan
,
C.
Bannwarth
,
B. S.
Fales
,
E. G.
Hohenstein
,
C. M.
Isborn
,
S. I. L.
Kokkila-Schumacher
,
X.
Li
,
F.
Liu
,
N.
Luehr
,
J. W.
Snyder
,
C.
Song
,
A. V.
Titov
,
I. S.
Ufimtsev
,
L.-P.
Wang
, and
T. J.
Martínez
, “
TeraChem: A graphical processing unit-accelerated electronic structure package for large-scale ab initio molecular dynamics
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1494
(
2020
).
50.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
,
R. P.
Wiewiora
,
B. R.
Brooks
, and
V. S.
Pande
, “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
51.
G.-L. R.
Anselmetti
,
D.
Wierichs
,
C.
Gogolin
, and
R. M.
Parrish
, “
Local, expressive, quantum-number-preserving VQE ansätze for fermionic systems
,”
New J. Phys.
23
,
113010
(
2021
).
52.
B.
O’Gorman
,
W. J.
Huggins
,
E. G.
Rieffel
, and
K. B.
Whaley
, “
Generalized swap networks for near-term quantum computing
,” arXiv:1905.05118 (
2019
).
53.
J.
Lee
,
W. J.
Huggins
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
Generalized unitary coupled cluster wave functions for quantum computation
,”
J. Chem. Theory Comput.
15
,
311
(
2018
).
54.
N.
Gidopoulos
and
A.
Theophilou
, “
Hartree-Fock equations determining the optimum set of spin orbitals for the expansion of excited states
,”
Philos. Mag. B
69
,
1067
(
1994
).
55.
N. I.
Gidopoulos
,
P. G.
Papaconstantinou
, and
E. K. U.
Gross
, “
Ensemble-Hartree–Fock scheme for excited states. the optimized effective potential method
,”
Physica B
318
,
328
(
2002
).
56.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
, “
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
,”
J. Chem. Phys.
76
,
637
(
1982
).
57.
F.
Dubnikova
and
A.
Lifshitz
, “
Isomerization of propylene oxide. Quantum chemical calculations and kinetic modeling
,”
J. Phys. Chem. A
104
,
4489
(
2000
).
58.
S.
Crosson
and
K.
Moffat
, “
Structure of a flavin-binding plant photoreceptor domain: Insights into light-mediated signal transduction
,”
Proc. Natl. Acad. Sci. U. S. A.
98
,
2995
(
2001
).
59.
A.
Warshel
and
M.
Levitt
, “
Theoretical studies of enzymic reactions: Dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme
,”
J. Mol. Biol.
103
,
227
(
1976
).
60.
E. G.
Hohenstein
,
N.
Luehr
,
I. S.
Ufimtsev
, and
T. J.
Martínez
, “
An atomic orbital-based formulation of the complete active space self-consistent field method on graphical processing units
,”
J. Chem. Phys.
142
,
224103
(
2015
).
61.
E. G.
Hohenstein
,
M. E. F.
Bouduban
,
C.
Song
,
N.
Luehr
,
I. S.
Ufimtsev
, and
T. J.
Martínez
, “
Analytic first derivatives of floating occupation molecular orbital-complete active space configuration interaction on graphical processing units
,”
J. Chem. Phys.
143
,
014111
(
2015
).
62.
D.
Mandal
,
T.
Tahara
, and
S. R.
Meech
, “
Excited-state dynamics in the green fluorescent protein chromophore
,”
J. Phys. Chem. B
108
,
1102
(
2003
).
63.
E. G.
Hohenstein
, “
Analytic formulation of derivative coupling vectors for complete active space configuration interaction wavefunctions with floating occupation molecular orbitals
,”
J. Chem. Phys.
145
,
174110
(
2016
).
64.
S.
Aaronson
, “
Shadow tomography of quantum states
,” in
Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018
(
Association for Computing Machinery
,
New York
,
2018
), pp.
325
338
.
65.
H.-Y.
Huang
,
R.
Kueng
, and
J.
Preskill
, “
Predicting many properties of a quantum system from very few measurements
,”
Nat. Phys.
16
,
1050
(
2020
).
66.
A.
Zhao
,
N. C.
Rubin
, and
A.
Miyake
, “
Fermionic partial tomography via classical shadows
,”
Phys. Rev. Lett.
127
,
110504
(
2021
).
67.
K.
Wan
,
W. J.
Huggins
,
J.
Lee
, and
R.
Babbush
, “
Matchgate shadows for fermionic quantum simulation
,” arXiv:2207.13723 (
2022
).
68.
R. M.
Parrish
,
E. G.
Hohenstein
,
P. L.
McMahon
, and
T. J.
Martínez
, “
Quantum computation of electronic transitions using a variational quantum eigensolver
,”
Phys. Rev. Lett.
122
,
230401
(
2019
).

Supplementary Material

You do not currently have access to this content.