Within the nuclear-electronic orbital (NEO) framework, the real-time NEO time-dependent density functional theory (RT-NEO-TDDFT) approach enables the simulation of coupled electronic-nuclear dynamics. In this approach, the electrons and quantum nuclei are propagated in time on the same footing. A relatively small time step is required to propagate the much faster electronic dynamics, thereby prohibiting the simulation of long-time nuclear quantum dynamics. Herein, the electronic Born–Oppenheimer (BO) approximation within the NEO framework is presented. In this approach, the electronic density is quenched to the ground state at each time step, and the real-time nuclear quantum dynamics is propagated on an instantaneous electronic ground state defined by both the classical nuclear geometry and the nonequilibrium quantum nuclear density. Because the electronic dynamics is no longer propagated, this approximation enables the use of an order-of-magnitude larger time step, thus greatly reducing the computational cost. Moreover, invoking the electronic BO approximation also fixes the unphysical asymmetric Rabi splitting observed in previous semiclassical RT-NEO-TDDFT simulations of vibrational polaritons even for small Rabi splitting, instead yielding a stable, symmetric Rabi splitting. For the intramolecular proton transfer in malonaldehyde, both RT-NEO-Ehrenfest dynamics and its BO counterpart can describe proton delocalization during the real-time nuclear quantum dynamics. Thus, the BO RT-NEO approach provides the foundation for a wide range of chemical and biological applications.

1.
W. H.
Miller
, “
The semiclassical initial value representation: A potentially practical way for adding quantum effects to classical molecular dynamics simulations
,”
J. Phys. Chem. A
105
,
2942
2955
(
2001
).
2.
S. J.
Cotton
and
W. H.
Miller
, “
Symmetrical windowing for quantum states in quasi-classical trajectory simulations
,”
J. Phys. Chem. A
117
,
7190
7194
(
2013
).
3.
T. E.
Markland
and
M.
Ceriotti
, “
Nuclear quantum effects enter the mainstream
,”
Nat. Rev. Chem.
2
,
0109
(
2018
).
4.
G. A.
Worth
,
H.-D.
Meyer
,
H.
Köppel
,
L. S.
Cederbaum
, and
I.
Burghardt
, “
Using the MCTDH wavepacket propagation method to describe multimode non-adiabatic dynamics
,”
Int. Rev. Phys. Chem.
27
,
569
606
(
2008
).
5.
A.
Abedi
,
N. T.
Maitra
, and
E. K. U.
Gross
, “
Exact factorization of the time-dependent electron-nuclear wave function
,”
Phys. Rev. Lett.
105
,
123002
(
2010
).
6.
S. P.
Webb
,
T.
Iordanov
, and
S.
Hammes-Schiffer
, “
Multiconfigurational nuclear-electronic orbital approach: Incorporation of nuclear quantum effects in electronic structure calculations
,”
J. Chem. Phys.
117
,
4106
4118
(
2002
).
7.
F.
Pavošević
,
T.
Culpitt
, and
S.
Hammes-Schiffer
, “
Multicomponent quantum chemistry: Integrating electronic and nuclear quantum effects via the nuclear–electronic orbital method
,”
Chem. Rev.
120
,
4222
4253
(
2020
).
8.
Z.
Tao
,
Q.
Yu
,
S.
Roy
, and
S.
Hammes-Schiffer
, “
Direct dynamics with nuclear–electronic orbital density functional theory
,”
Acc. Chem. Res.
54
,
4131
4141
(
2021
).
9.
X.
Xu
,
Z.
Chen
, and
Y.
Yang
, “
Molecular dynamics with constrained nuclear electronic orbital density functional theory: Accurate vibrational spectra from efficient incorporation of nuclear quantum effects
,”
J. Am. Chem. Soc.
144
,
4039
4046
(
2022
).
10.
Q.
Yu
,
S.
Roy
, and
S.
Hammes-Schiffer
, “
Nonadiabatic dynamics of hydrogen tunneling with nuclear-electronic orbital multistate density functional theory
,”
J. Chem. Theory Comput.
18
,
7132
7141
(
2022
).
11.
L.
Zhao
,
Z.
Tao
,
F.
Pavošević
,
A.
Wildman
,
S.
Hammes-Schiffer
, and
X.
Li
, “
Real-time time-dependent nuclear-electronic orbital approach: Dynamics beyond the Born-Oppenheimer approximation
,”
J. Phys. Chem. Lett.
11
,
4052
4058
(
2020
).
12.
L.
Zhao
,
A.
Wildman
,
Z.
Tao
,
P.
Schneider
,
S.
Hammes-Schiffer
, and
X.
Li
, “
Nuclear–electronic orbital Ehrenfest dynamics
,”
J. Chem. Phys.
153
,
224111
(
2020
).
13.
L.
Zhao
,
A.
Wildman
,
F.
Pavošević
,
J. C.
Tully
,
S.
Hammes-Schiffer
, and
X.
Li
, “
Excited state intramolecular proton transfer with nuclear-electronic orbital Ehrenfest dynamics
,”
J. Phys. Chem. Lett.
12
,
3497
3502
(
2021
).
14.
T. E.
Li
,
Z.
Tao
, and
S.
Hammes-Schiffer
, “
Semiclassical real-time nuclear-electronic orbital dynamics for molecular polaritons: Unified theory of electronic and vibrational strong couplings
,”
J. Chem. Theory Comput.
18
,
2774
2784
(
2022
).
15.
X.
Li
,
J. C.
Tully
,
H. B.
Schlegel
, and
M. J.
Frisch
, “
Ab initio Ehrenfest dynamics
,”
J. Chem. Phys.
123
,
084106
(
2005
).
16.
C. M.
Isborn
,
X.
Li
, and
J. C.
Tully
, “
Time-dependent density functional theory Ehrenfest dynamics: Collisions between atomic oxygen and graphite clusters
,”
J. Chem. Phys.
126
,
134307
(
2007
).
17.
J. C.
Tully
, “
Molecular dynamics with electronic transitions
,”
J. Chem. Phys.
93
,
1061
1071
(
1990
).
18.
T.-C.
Li
and
P.-Q.
Tong
, “
Time-dependent density-functional theory for multicomponent systems
,”
Phys. Rev. A
34
,
529
532
(
1986
).
19.
R.
van Leeuwen
and
E. K. U.
Gross
, “
Multicomponent density-functional theory
,” in
Time-Dependent Density Functional Theory
, edited by
M. A.
Marques
,
C. A.
Ullrich
,
F.
Nogueira
,
A.
Rubio
,
K.
Burke
, and
E. K. U.
Gross
(
Springer
,
Berlin, Heidelberg
,
2006
), pp.
93
106
.
20.
O.
Butriy
,
H.
Ebadi
,
P. L.
de Boeij
,
R.
van Leeuwen
, and
E. K. U.
Gross
, “
Multicomponent density-functional theory for time-dependent systems
,”
Phys. Rev. A
76
,
052514
(
2007
).
21.
Y.
Yang
,
T.
Culpitt
, and
S.
Hammes-Schiffer
, “
Multicomponent time-dependent density functional theory: Proton and electron excitation energies
,”
J. Phys. Chem. Lett.
9
,
1765
1770
(
2018
).
22.
A.
Thomas
,
L.
Lethuillier-Karl
,
K.
Nagarajan
,
R. M. A.
Vergauwe
,
J.
George
,
T.
Chervy
,
A.
Shalabney
,
E.
Devaux
,
C.
Genet
,
J.
Moran
, and
T. W.
Ebbesen
, “
Tilting a ground-state reactivity landscape by vibrational strong coupling
,”
Science
363
,
615
619
(
2019
).
23.
T. E.
Li
,
B.
Cui
,
J. E.
Subotnik
, and
A.
Nitzan
, “
Molecular polaritonics: Chemical dynamics under strong light–matter coupling
,”
Annu. Rev. Phys. Chem.
73
,
43
71
(
2022
).
24.
J.
Fregoni
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Theoretical challenges in polaritonic chemistry
,”
ACS Photonics
9
,
1096
1107
(
2022
).
25.
K.
Nagarajan
,
A.
Thomas
, and
T. W.
Ebbesen
, “
Chemistry under vibrational strong coupling
,”
J. Am. Chem. Soc.
143
,
16877
16889
(
2021
).
26.
X.
Xu
and
Y.
Yang
, “
Constrained nuclear-electronic orbital density functional theory: Energy surfaces with nuclear quantum effects
,”
J. Chem. Phys.
152
,
084107
(
2020
).
27.
S. L.
Baughcum
,
Z.
Smith
,
E. B.
Wilson
, and
R. W.
Duerst
, “
Microwave spectroscopic study of malonaldehyde. 3. Vibration-rotation interaction and one-dimensional model for proton tunneling
,”
J. Am. Chem. Soc.
106
,
2260
2265
(
1984
).
28.
T.
Baba
,
T.
Tanaka
,
I.
Morino
,
K. M. T.
Yamada
, and
K.
Tanaka
, “
Detection of the tunneling-rotation transitions of malonaldehyde in the submillimeter-wave region
,”
J. Chem. Phys.
110
,
4131
4133
(
1999
).
29.
V.
Barone
and
C.
Adamo
, “
Proton transfer in the ground and lowest excited states of malonaldehyde: A comparative density functional and post-Hartree–Fock study
,”
J. Chem. Phys.
105
,
11007
11019
(
1996
).
30.
M. E.
Tuckerman
and
D.
Marx
, “
Heavy-atom skeleton quantization and proton tunneling in ‘intermediate-barrier’ hydrogen bonds
,”
Phys. Rev. Lett.
86
,
4946
4949
(
2001
).
31.
C. S.
Tautermann
,
A. F.
Voegele
,
T.
Loerting
, and
K. R.
Liedl
, “
The optimal tunneling path for the proton transfer in malonaldehyde
,”
J. Chem. Phys.
117
,
1962
1966
(
2002
).
32.
M. V.
Pak
,
A.
Chakraborty
, and
S.
Hammes-Schiffer
, “
Density functional theory treatment of electron correlation in the nuclear-electronic orbital approach
,”
J. Phys. Chem. A
111
,
4522
4526
(
2007
).
33.
A.
Chakraborty
,
M. V.
Pak
, and
S.
Hammes-Schiffer
, “
Development of electron-proton density functionals for multicomponent density functional theory
,”
Phys. Rev. Lett.
101
,
153001
(
2008
).
34.
J. J.
Goings
,
P. J.
Lestrange
, and
X.
Li
, “
Real-time time-dependent electronic structure theory
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1341
(
2018
).
35.
C. M.
Isborn
and
X.
Li
, “
Modeling the doubly excited state with time-dependent Hartree–Fock and density functional theories
,”
J. Chem. Phys.
129
,
204107
(
2008
).
36.
J.
Galego
,
C.
Climent
,
F. J.
Garcia-Vidal
, and
J.
Feist
, “
Cavity Casimir-Polder forces and their effects in ground-state chemical reactivity
,”
Phys. Rev. X
9
,
021057
(
2019
).
37.
J. A.
Campos-Gonzalez-Angulo
,
R. F.
Ribeiro
, and
J.
Yuen-Zhou
, “
Resonant catalysis of thermally activated chemical reactions with vibrational polaritons
,”
Nat. Commun.
10
,
4685
(
2019
).
38.
X.
Li
,
A.
Mandal
, and
P.
Huo
, “
Cavity frequency-dependent theory for vibrational polariton chemistry
,”
Nat. Commun.
12
,
1315
(
2021
).
39.
C.
Schäfer
,
J.
Flick
,
E.
Ronca
,
P.
Narang
, and
A.
Rubio
, “
Shining light on the microscopic resonant mechanism responsible for cavity-mediated chemical reactivity
,”
Nat. Commun.
13
,
7817
(
2022
).
40.
J.
Flick
,
M.
Ruggenthaler
,
H.
Appel
, and
A.
Rubio
, “
Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
3026
3034
(
2017
).
41.
B.
Rosenzweig
,
N. M.
Hoffmann
,
L.
Lacombe
, and
N. T.
Maitra
, “
Analysis of the classical trajectory treatment of photon dynamics for polaritonic phenomena
,”
J. Chem. Phys.
156
,
054101
(
2022
).
42.
R. R.
Riso
,
T. S.
Haugland
,
E.
Ronca
, and
H.
Koch
, “
Molecular orbital theory in cavity QED environments
,”
Nat. Commun.
13
,
1368
(
2022
).
43.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
,
Z.
Gan
,
D.
Hait
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
J.
Kussmann
,
A. W.
Lange
,
K. U.
Lao
,
D. S.
Levine
,
J.
Liu
,
S. C.
McKenzie
,
A. F.
Morrison
,
K. D.
Nanda
,
F.
Plasser
,
D. R.
Rehn
,
M. L.
Vidal
,
Z.-Q.
You
,
Y.
Zhu
,
B.
Alam
,
B. J.
Albrecht
,
A.
Aldossary
,
E.
Alguire
,
J. H.
Andersen
,
V.
Athavale
,
D.
Barton
,
K.
Begam
,
A.
Behn
,
N.
Bellonzi
,
Y. A.
Bernard
,
E. J.
Berquist
,
H. G. A.
Burton
,
A.
Carreras
,
K.
Carter-Fenk
,
R.
Chakraborty
,
A. D.
Chien
,
K. D.
Closser
,
V.
Cofer-Shabica
,
S.
Dasgupta
,
M.
De Wergifosse
,
J.
Deng
,
M.
Diedenhofen
,
H.
Do
,
S.
Ehlert
,
P.-T.
Fang
,
S.
Fatehi
,
Q.
Feng
,
T.
Friedhoff
,
J.
Gayvert
,
Q.
Ge
,
G.
Gidofalvi
,
M.
Goldey
,
J.
Gomes
,
C. E.
González-Espinoza
,
S.
Gulania
,
A. O.
Gunina
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A.
Hauser
,
M. F.
Herbst
,
M.
Hernández Vera
,
M.
Hodecker
,
Z. C.
Holden
,
S.
Houck
,
X.
Huang
,
K.
Hui
,
B. C.
Huynh
,
M.
Ivanov
,
Á.
Jász
,
H.
Ji
,
H.
Jiang
,
B.
Kaduk
,
S.
Kähler
,
K.
Khistyaev
,
J.
Kim
,
G.
Kis
,
P.
Klunzinger
,
Z.
Koczor-Benda
,
J. H.
Koh
,
D.
Kosenkov
,
L.
Koulias
,
T.
Kowalczyk
,
C. M.
Krauter
,
K.
Kue
,
A.
Kunitsa
,
T.
Kus
,
I.
Ladjánszki
,
A.
Landau
,
K. V.
Lawler
,
D.
Lefrancois
,
S.
Lehtola
,
R. R.
Li
,
Y.-P.
Li
,
J.
Liang
,
M.
Liebenthal
,
H.-H.
Lin
,
Y.-S.
Lin
,
F.
Liu
,
K.-Y.
Liu
,
M.
Loipersberger
,
A.
Luenser
,
A.
Manjanath
,
P.
Manohar
,
E.
Mansoor
,
S. F.
Manzer
,
S.-P.
Mao
,
A. V.
Marenich
,
T.
Markovich
,
S.
Mason
,
S. A.
Maurer
,
P. F.
McLaughlin
,
M. F. S. J.
Menger
,
J.-M.
Mewes
,
S. A.
Mewes
,
P.
Morgante
,
J. W.
Mullinax
,
K. J.
Oosterbaan
,
G.
Paran
,
A. C.
Paul
,
S. K.
Paul
,
F.
Pavošević
,
Z.
Pei
,
S.
Prager
,
E. I.
Proynov
,
Á.
Rák
,
E.
Ramos-Cordoba
,
B.
Rana
,
A. E.
Rask
,
A.
Rettig
,
R. M.
Richard
,
F.
Rob
,
E.
Rossomme
,
T.
Scheele
,
M.
Scheurer
,
M.
Schneider
,
N.
Sergueev
,
S. M.
Sharada
,
W.
Skomorowski
,
D. W.
Small
,
C. J.
Stein
,
Y.-C.
Su
,
E. J.
Sundstrom
,
Z.
Tao
,
J.
Thirman
,
G. J.
Tornai
,
T.
Tsuchimochi
,
N. M.
Tubman
,
S. P.
Veccham
,
O.
Vydrov
,
J.
Wenzel
,
J.
Witte
,
A.
Yamada
,
K.
Yao
,
S.
Yeganeh
,
S. R.
Yost
,
A.
Zech
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhang
,
D.
Zuev
,
A.
Aspuru-Guzik
,
A. T.
Bell
,
N. A.
Besley
,
K. B.
Bravaya
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
S.
Coriani
,
C. J.
Cramer
,
G.
Cserey
,
A. E.
Deprince
,
R. A.
Distasio
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
W. A.
Goddard
,
S.
Hammes-Schiffer
,
T.
Head-Gordon
,
W. J.
Hehre
,
C.-P.
Hsu
,
T.-C.
Jagau
,
Y.
Jung
,
A.
Klamt
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
N. J.
Mayhall
,
C. W.
McCurdy
,
J. B.
Neaton
,
C.
Ochsenfeld
,
J. A.
Parkhill
,
R.
Peverati
,
V. A.
Rassolov
,
Y.
Shao
,
L. V.
Slipchenko
,
T.
Stauch
,
R. P.
Steele
,
J. E.
Subotnik
,
A. J. W.
Thom
,
A.
Tkatchenko
,
D. G.
Truhlar
,
T.
Van Voorhis
,
T. A.
Wesolowski
,
K. B.
Whaley
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
S.
Faraji
,
P. M. W.
Gill
,
M.
Head-Gordon
,
J. M.
Herbert
, and
A. I.
Krylov
, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
44.
X.
Li
,
S. M.
Smith
,
A. N.
Markevitch
,
D. A.
Romanov
,
R. J.
Levis
, and
H. B.
Schlegel
, “
A time-dependent Hartree–Fock approach for studying the electronic optical response of molecules in intense fields
,”
Phys. Chem. Chem. Phys.
7
,
233
239
(
2005
).
45.
M.
De Santis
,
L.
Storchi
,
L.
Belpassi
,
H. M.
Quiney
, and
F.
Tarantelli
, “
PyBERTHART: A relativistic real-time four-component TDDFT implementation using prototyping techniques based on Python
,”
J. Chem. Theory Comput.
16
,
2410
2429
(
2020
).
46.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
, “
Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density
,”
Phys. Rev. B
37
,
785
(
1988
).
47.
A. D.
Becke
, “
Density-functional exchange-energy approximation with correct asymptotic behavior
,”
Phys. Rev. A
38
,
3098
(
1988
).
48.
A. D.
Becke
, “
A new inhomogeneity parameter in density-functional theory
,”
J. Chem. Phys.
109
,
2092
(
1998
).
49.
K. R.
Brorsen
,
Y.
Yang
, and
S.
Hammes-Schiffer
, “
Multicomponent density functional theory: Impact of nuclear quantum effects on proton affinities and geometries
,”
J. Phys. Chem. Lett.
8
,
3488
3493
(
2017
).
50.
Y.
Yang
,
K. R.
Brorsen
,
T.
Culpitt
,
M. V.
Pak
, and
S.
Hammes-Schiffer
, “
Development of a practical multicomponent density functional for electron-proton correlation to produce accurate proton densities
,”
J. Chem. Phys.
147
,
114113
(
2017
).
51.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
52.
Q.
Yu
,
F.
Pavošević
, and
S.
Hammes-Schiffer
, “
Development of nuclear basis sets for multicomponent quantum chemistry methods
,”
J. Chem. Phys.
152
,
244123
(
2020
).
53.
A.
Bruner
,
D.
Lamaster
, and
K.
Lopata
, “
Accelerated broadband spectra using transition dipole decomposition and Padé approximants
,”
J. Chem. Theory Comput.
12
,
3741
3750
(
2016
).
54.
T.
Culpitt
,
Y.
Yang
,
F.
Pavošević
,
Z.
Tao
, and
S.
Hammes-Schiffer
, “
Enhancing the applicability of multicomponent time-dependent density functional theory
,”
J. Chem. Phys.
150
,
201101
(
2019
).
55.
J.
Yang
,
Z.
Pei
,
J.
Deng
,
Y.
Mao
,
Q.
Wu
,
Z.
Yang
,
B.
Wang
,
C. M.
Aikens
,
W.
Liang
, and
Y.
Shao
, “
Analysis and visualization of energy densities. I. Insights from real-time time-dependent density functional theory simulations
,”
Phys. Chem. Chem. Phys.
22
,
26838
26851
(
2020
).
56.
A.
Frisk Kockum
,
A.
Miranowicz
,
S.
De Liberato
,
S.
Savasta
, and
F.
Nori
, “
Ultrastrong coupling between light and matter
,”
Nat. Rev. Phys.
1
,
19
40
(
2019
).
57.
T. E.
Li
,
J. E.
Subotnik
, and
A.
Nitzan
, “
Cavity molecular dynamics simulations of liquid water under vibrational ultrastrong coupling
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
18324
18331
(
2020
).
58.
J.
George
,
A.
Shalabney
,
J. A.
Hutchison
,
C.
Genet
, and
T. W.
Ebbesen
, “
Liquid-phase vibrational strong coupling
,”
J. Phys. Chem. Lett.
6
,
1027
1031
(
2015
).
59.
J.
Yang
,
Q.
Ou
,
Z.
Pei
,
H.
Wang
,
B.
Weng
,
Z.
Shuai
,
K.
Mullen
, and
Y.
Shao
, “
Quantum-electrodynamical time-dependent density functional theory within Gaussian atomic basis
,”
J. Chem. Phys.
155
,
064107
(
2021
).
60.
K.
Luo
,
J. I.
Fuks
, and
N. T.
Maitra
, “
Studies of spuriously shifting resonances in time-dependent density functional theory
,”
J. Chem. Phys.
145
,
044101
(
2016
).
61.

Note that a more general definition of proton transfer time would require the proton to form a stable bond with the acceptor oxygen.

62.
S.
Hammes-Schiffer
, “
Proton-coupled electron transfer: Moving together and charging forward
,”
J. Am. Chem. Soc.
137
,
8860
8871
(
2015
).

Supplementary Material

You do not currently have access to this content.