Two-dimensional (2D) infrared (IR) spectra are commonly interpreted using a quantum diagrammatic expansion that describes the changes to the density matrix of quantum systems in response to light–matter interactions. Although classical response functions (based on Newtonian dynamics) have shown promise in computational 2D IR modeling studies, a simple diagrammatic description has so far been lacking. Recently, we introduced a diagrammatic representation for the 2D IR response functions of a single, weakly anharmonic oscillator and showed that the classical and quantum 2D IR response functions for this system are identical. Here, we extend this result to systems with an arbitrary number of bilinearly coupled, weakly anharmonic oscillators. As in the single-oscillator case, quantum and classical response functions are found to be identical in the weakly anharmonic limit or, in experimental terms, when the anharmonicity is small relative to the optical linewidth. The final form of the weakly anharmonic response function is surprisingly simple and offers potential computational advantages for application to large, multi-oscillator systems.

1.
N. T.
Hunt
,
Chem. Soc. Rev.
38
,
1837
(
2009
).
2.
C. R.
Baiz
,
M.
Reppert
, and
A.
Tokmakoff
, in
Ultrafast Infrared Vibrational Spectroscopy
, edited by
M. D.
Fayer
(
CRC Press
,
Boca Raton
,
2013
), Chap. 12, pp.
361
404
.
3.
M.
Reppert
and
A.
Tokmakoff
,
Annu. Rev. Phys. Chem.
67
,
359
(
2016
).
4.
T.
la Cour Jansen
,
S.
Saito
,
J.
Jeon
, and
M.
Cho
,
J. Chem. Phys.
150
,
100901
(
2019
).
5.
C.
Liang
and
T.
la Cour Jansen
,
J. Chem. Theory Comput.
8
,
1706
(
2012
).
6.
T.
la Cour Jansen
,
J. G.
Snijders
, and
K.
Duppen
,
J. Chem. Phys.
113
,
307
(
2000
).
7.
C.
Dellago
and
S.
Mukamel
,
Phys. Rev. E
67
,
035205(R)
(
2003
).
8.
W. G.
Noid
,
G. S.
Ezra
, and
R. F.
Loring
,
J. Chem. Phys.
120
,
1491
(
2004
).
9.
J.
Jeon
and
M.
Cho
,
New J. Phys.
12
,
065001
(
2010
).
10.
A.
Sakurai
and
Y.
Tanimura
,
J. Phys. Chem. A
115
,
4009
(
2011
).
11.
J.
Jeon
and
M.
Cho
,
J. Phys. Chem. B
118
,
8148
(
2014
).
12.
H.
Ito
,
J.-Y.
Jo
, and
Y.
Tanimura
,
Struct. Dyn.
2
,
054102
(
2015
).
13.
T.
Hasegawa
and
Y.
Tanimura
,
J. Chem. Phys.
125
,
074512
(
2006
).
14.
S.
Saito
and
I.
Ohmine
,
J. Chem. Phys.
119
,
9073
(
2003
).
15.
K. A.
Jung
and
T. E.
Markland
,
J. Chem. Phys.
157
,
094111
(
2022
).
16.
M.
Gerace
and
R. F.
Loring
,
J. Phys. Chem. B
117
,
15452
(
2013
).
17.
M.
Alemi
and
R. F.
Loring
,
J. Chem. Phys.
142
,
212417
(
2015
).
18.
R. F.
Loring
,
J. Chem. Phys.
146
,
144106
(
2017
).
19.
20.
S.
Mukamel
,
V.
Khidekel
, and
V.
Chernyak
,
Phys. Rev. E
53
,
R1
(
1996
).
21.
W. G.
Noid
and
R. F.
Loring
,
J. Chem. Phys.
121
,
7057
(
2004
).
22.
W. G.
Noid
and
R. F.
Loring
,
J. Chem. Phys.
122
,
174507
(
2005
).
23.
W. G.
Noid
and
R. F.
Loring
,
Mol. Phys.
103
,
3071
(
2005
).
24.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
, Oxford Series in Optical and Imaging Sciences (
Oxford University Press
,
1995
).
25.
M.
Reppert
and
D.
Reppert
,
Phys. Rev. A
104
,
033519
(
2021
).
26.
T.
la Cour Jansen
and
J.
Knoester
,
J. Phys. Chem. B
110
,
22910
(
2006
).
27.
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
102
,
6123
(
1998
).
28.

To be precise, their contributions to Eq. (54) vanish under Eq. (36).

29.
M.
Reppert
and
P.
Brumer
,
J. Chem. Phys.
149
,
234102
(
2018
).
30.
M.
Reppert
,
D.
Reppert
,
L. A.
Pachon
, and
P.
Brumer
,
Phys. Rev. A
102
,
012211
(
2020
).
31.
J. S.
Briggs
and
A.
Eisfeld
,
Phys. Rev. E
83
,
051911
(
2011
).
32.
A.
Eisfeld
and
J. S.
Briggs
,
Phys. Rev. E
85
,
046118
(
2012
).
33.
T.
Mancal
,
J. Phys. Chem. B
117
,
11282
(
2013
).
34.
J.
Wilkie
and
P.
Brumer
,
Phys. Rev. A
55
,
27
(
1997
).
35.
J.
Wilkie
and
P.
Brumer
,
Phys. Rev. A
55
,
43
(
1997
).
36.
W. G.
Noid
,
G. S.
Ezra
, and
R. F.
Loring
,
J. Phys. Chem. B
108
,
6536
(
2004
).
37.
M.
Kryvohuz
and
J.
Cao
,
Phys. Rev. Lett.
95
,
180405
(
2005
).
38.
M.
Reppert
and
P.
Brumer
,
J. Chem. Phys.
148
,
064101
(
2018
).
39.
W.
Zhuang
,
D.
Abramavicius
,
T.
Hayashi
, and
S.
Mukamel
,
J. Phys. Chem. B
110
,
3362
(
2006
).
40.
D.
Abramavicius
and
S.
Mukamel
,
J. Chem. Phys.
122
,
134305
(
2005
).
41.
M.
Hillery
,
R. F.
O’Connell
,
M. O.
Scully
, and
E. P.
Wigner
,
Phys. Rep.
106
,
121
(
1984
).
42.
T.
la Cour Jansen
and
J.
Knoester
,
J. Chem. Phys.
124
,
044502
(
2006
).
43.
T.
la Cour Jansen
,
A. G.
Dijkstra
,
T. M.
Watson
,
J. D.
Hirst
, and
J.
Knoester
,
J. Chem. Phys.
125
,
044312
(
2006
).
44.
R. M.
Hochstrasser
,
Chem. Phys.
266
,
273
(
2001
).
45.
Y.-S.
Lin
,
J. M.
Shorb
,
P.
Mukherjee
,
M. T.
Zanni
, and
J. L.
Skinner
,
J. Phys. Chem. B
113
,
592
(
2009
).
46.

The frequencies needed for the g_spec calculation are the local transition energies of each oscillator for the 0 → 1 and 1 → 2 transitions. Under the full Hamiltonian ĤS(0) + ĤS(1), the ground state for each individual oscillator has energy ωn2+2Δ4; the first excited state energy is 3ωn2+92Δ4; and the energy of the second excited state is 5ωn2+25Δ24. The 0 → 1 transition frequency is thus ωn + 2Δ, while the 1 → 2 frequency is ωn + 4Δ.

47.
J.
Wu
and
J.
Cao
,
J. Chem. Phys.
115
,
5381
(
2001
).
48.
N. G.
van Kampen
,
Phys. Norv.
5
,
279
(
1971
).
49.
M.
Kryvohuz
and
J.
Cao
,
J. Chem. Phys.
122
,
024109
(
2005
).
50.
M.
Kryvohuz
and
J.
Cao
,
Phys. Rev. Lett.
96
,
030403
(
2006
).
51.
M.
Kryvohuz
,
J.
Cao
, and
S.
Mukamel
,
J. Phys. Chem. B
112
,
15999
(
2008
).
52.
M.
Kryvohuz
and
J.
Cao
,
J. Chem. Phys.
130
,
234107
(
2009
).
53.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
102
,
3337
(
1995
).
54.
K.
Ramasesha
,
L.
De Marco
,
A.
Mandal
, and
A.
Tokmakoff
,
Nat. Chem.
5
,
935
(
2013
).
55.
H.
Torii
,
J. Phys. Chem. A
110
,
4822
(
2006
).

Supplementary Material

You do not currently have access to this content.