Allostery is an important regulatory mechanism of protein functions. Among allosteric proteins, certain protein structure types are more observed. However, how allosteric regulation depends on protein topology remains elusive. In this study, we extracted protein topology graphs at the fold level and found that known allosteric proteins mainly contain multiple domains or subunits and allosteric sites reside more often between two or more domains of the same fold type. Only a small fraction of fold–fold combinations are observed in allosteric proteins, and homo-fold–fold combinations dominate. These analyses imply that the locations of allosteric sites including cryptic ones depend on protein topology. We further developed TopoAlloSite, a novel method that uses the kernel support vector machine to predict the location of allosteric sites on the overall protein topology based on the subgraph-matching kernel. TopoAlloSite successfully predicted known cryptic allosteric sites in several allosteric proteins like phosphopantothenoylcysteine synthetase, spermidine synthase, and sirtuin 6, demonstrating its power in identifying cryptic allosteric sites without performing long molecular dynamics simulations or large-scale experimental screening. Our study demonstrates that protein topology largely determines how its function can be allosterically regulated, which can be used to find new druggable targets and locate potential binding sites for rational allosteric drug design.

1.
J.
Liu
and
R.
Nussinov
,
PLoS Comput. Biol.
12
,
e1004966
(
2016
).
2.
A. J.
Faure
,
J.
Domingo
,
J. M.
Schmiedel
,
C.
Hidalgo-Carcedo
,
G.
Diss
, and
B.
Lehner
,
Nature
604
,
175
(
2022
).
4.
D. M.
Thal
,
A.
Glukhova
,
P. M.
Sexton
, and
A.
Christopoulos
,
Nature
559
,
45
(
2018
).
5.
J.-P.
Changeux
and
A.
Christopoulos
,
Cell
166
,
1084
(
2016
).
6.
A.
Chatzigoulas
and
Z.
Cournia
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
11
,
e1529
(
2021
).
7.
A. A.
Wylie
,
J.
Schoepfer
,
W.
Jahnke
,
S. W.
Cowan-Jacob
,
A.
Loo
,
P.
Furet
,
A. L.
Marzinzik
,
X.
Pelle
,
J.
Donovan
,
W.
Zhu
,
S.
Buonamici
,
A. Q.
Hassan
,
F.
Lombardo
,
V.
Iyer
,
M.
Palmer
,
G.
Berellini
,
S.
Dodd
,
S.
Thohan
,
H.
Bitter
,
S.
Branford
,
D. M.
Ross
,
T. P.
Hughes
,
L.
Petruzzelli
,
K. G.
Vanasse
,
M.
Warmuth
,
F.
Hofmann
,
N. J.
Keen
, and
W. R.
Sellers
,
Nature
543
,
733
(
2017
).
8.
O.
Sheik Amamuddy
,
W.
Veldman
,
C.
Manyumwa
,
A.
Khairallah
,
S.
Agajanian
,
O.
Oluyemi
,
G. M.
Verkhivker
, and
Ö.
Tastan Bishop
,
Int. J. Mol. Sci.
21
,
847
(
2020
).
9.
J.
Xie
and
L.
Lai
,
Curr. Opin. Struct. Biol.
62
,
158
(
2020
).
10.
D.
Thirumalai
,
C.
Hyeon
,
P. I.
Zhuravlev
, and
G. H.
Lorimer
,
Chem. Rev.
119
,
6788
(
2019
).
11.
D. M.
Kremer
and
C. A.
Lyssiotis
,
Nat. Chem. Biol.
18
,
441
(
2022
).
12.
J.-H.
Han
,
S.
Batey
,
A. A.
Nickson
,
S. A.
Teichmann
, and
J.
Clarke
,
Nat. Rev. Mol. Cell Biol.
8
,
319
(
2007
).
13.
B. F.
Volkman
,
D.
Lipson
,
D. E.
Wemmer
, and
D.
Kern
,
Science
291
,
2429
(
2001
).
14.
J.
Xie
,
S.
Wang
,
Y.
Xu
,
M.
Deng
, and
L.
Lai
,
J. Chem. Inf. Model.
62
,
187
(
2022
).
15.
S.
Vishwanath
,
A. G.
de Brevern
, and
N.
Srinivasan
,
PLoS Comput. Biol.
14
,
e1006008
(
2018
).
16.
D.
Chakraborty
,
M. L.
Mugnai
, and
D.
Thirumalai
,
Symmetry
13
,
770
(
2021
).
17.
V.
Oleinikovas
,
G.
Saladino
,
B. P.
Cossins
, and
F. L.
Gervasio
,
J. Am. Chem. Soc.
138
,
14257
(
2016
).
18.
J. M.
Ostrem
,
U.
Peters
,
M. L.
Sos
,
J. A.
Wells
, and
K. M.
Shokat
,
Nature
503
,
548
(
2013
).
19.
S. R.
Kimura
,
H. P.
Hu
,
A. M.
Ruvinsky
,
W.
Sherman
, and
A. D.
Favia
,
J. Chem. Inf. Model.
57
,
1388
(
2017
).
20.
H.
Tian
,
X.
Jiang
, and
P.
Tao
,
Mach. Learn.: Sci. Technol.
2
,
035015
(
2021
).
21.
K.
Song
,
X.
Liu
,
W.
Huang
,
S.
Lu
,
Q.
Shen
,
L.
Zhang
, and
J.
Zhang
,
J. Chem. Inf. Model.
57
,
2358
(
2017
).
22.
X.
Ma
,
H.
Meng
, and
L.
Lai
,
J. Chem. Inf. Model.
56
,
1725
(
2016
).
23.
S.
Lu
,
M.
Ji
,
D.
Ni
, and
J.
Zhang
,
Drug Discovery Today
23
,
359
(
2018
).
24.
J.
Ma
,
P. B.
Sigler
,
Z.
Xu
, and
M.
Karplus
,
J. Mol. Biol.
302
,
303
(
2000
).
25.
Q.
Cui
and
M.
Karplus
,
Protein Sci.
17
,
1295
(
2008
).
26.
G. R.
Bowman
,
E. R.
Bolin
,
K. M.
Hart
,
B. C.
Maguire
, and
S.
Marqusee
,
Proc. Natl. Acad. Sci. U. S. A.
112
,
2734
(
2015
).
27.
G. R.
Bowman
and
P. L.
Geissler
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
11681
(
2012
).
28.
D.
Ni
,
J.
Wei
,
X.
He
,
A. U.
Rehman
,
X.
Li
,
Y.
Qiu
,
J.
Pu
,
S.
Lu
, and
J.
Zhang
,
Chem. Sci.
12
,
464
(
2021
).
29.
T.
Lundqvist
,
S. L.
Fisher
,
G.
Kern
,
R. H. A.
Folmer
,
Y.
Xue
,
D. T.
Newton
,
T. A.
Keating
,
R. A.
Alm
, and
B. L. M.
de Jonge
,
Nature
447
,
817
(
2007
).
30.
D. A.
Erlanson
,
A. C.
Braisted
,
D. R.
Raphael
,
M.
Randal
,
R. M.
Stroud
,
E. M.
Gordon
, and
J. A.
Wells
,
Proc. Natl. Acad. Sci. U. S. A.
97
,
9367
(
2000
).
31.
V.
Mendes
,
S. R.
Green
,
J. C.
Evans
,
J.
Hess
,
M.
Blaszczyk
,
C.
Spry
,
O.
Bryant
,
J.
Cory-Wright
,
D. S.-H.
Chan
,
P. H. M.
Torres
,
Z.
Wang
,
N.
Nahiyaan
,
S.
O’Neill
,
S.
Damerow
,
J.
Post
,
T.
Bayliss
,
S. L.
Lynch
,
A. G.
Coyne
,
P. C.
Ray
,
C.
Abell
,
K. Y.
Rhee
,
H. I. M.
Boshoff
,
C. E.
Barry
,
V.
Mizrahi
,
P. G.
Wyatt
, and
T. L.
Blundell
,
Nat. Commun.
12
,
143
(
2021
).
32.
Z.
Huang
,
L.
Zhu
,
Y.
Cao
,
G.
Wu
,
X.
Liu
,
Y.
Chen
,
Q.
Wang
,
T.
Shi
,
Y.
Zhao
,
Y.
Wang
,
W.
Li
,
Y.
Li
,
H.
Chen
,
G.
Chen
, and
J.
Zhang
,
Nucleic Acids Res.
39
,
D663
(
2011
).
33.
N. L.
Dawson
,
T. E.
Lewis
,
S.
Das
,
J. G.
Lees
,
D.
Lee
,
P.
Ashford
,
C. A.
Orengo
, and
I.
Sillitoe
,
Nucleic Acids Res.
45
,
D289
(
2017
).
34.
C. A.
Orengo
,
F. M. G.
Pearl
,
J. E.
Bray
,
A. E.
Todd
,
A. C.
Martin
,
L.
Lo Conte
, and
J. M.
Thornton
,
Nucleic Acids Res.
27
,
275
(
1999
).
35.
I.
Koch
and
T.
Schafer
,
Curr. Opin. Struct. Biol.
50
,
134
(
2018
).
36.
M. U.
Gutmann
and
A.
Hyvarinen
,
J. Mach. Learn. Res.
13
,
307
(
2012
).
37.
N. M.
Kriege
,
F. D.
Johansson
, and
C.
Morris
,
Appl. Network Sci.
5
(
1
),
6
(
2020
).
38.
C. M.
Bishop
and
N. M.
Nasrabadi
,
Pattern Recognition and Machine Learning
(
Springer
,
2006
), Vol. 4, p.
738
.
39.
D.
Haussler
, Technical Report No. UCSC-CRL-99-10,
Department of Computer Science, University of California
,
1999
.
40.
N.
Kriege
and
P.
Mutzel
, in
Proceedings of the 29th International Conference on Machine Learning
(
Omnipress
,
2012
), p.
291
arXiv:1206.6483 (
2012
).
41.
N.
Naveenkumar
,
G.
Kumar
,
N.
Srinivasan
,
R.
Sowdhamini
, and
S.
Vishwanath
,
Bioinformation
15
,
342
(
2019
).
42.
C.
Vogel
,
M.
Bashton
,
N. D.
Kerrison
,
C.
Chothia
, and
S. A.
Teichmann
,
Curr. Opin. Struct. Biol.
14
,
208
(
2004
).
43.
Q.
Huang
,
L.
Lai
, and
Z.
Liu
,
J. Chem. Inf. Model.
62
,
2538
(
2022
).
44.
P. J.
Cross
,
T. M.
Allison
,
R. C. J.
Dobson
,
G. B.
Jameson
, and
E. J.
Parker
,
Proc. Natl. Acad. Sci. U. S. A.
110
,
2111
(
2013
).
45.
P.
Laurino
,
Á.
Tóth-Petróczy
,
R.
Meana-Pañeda
,
W.
Lin
,
D. G.
Truhlar
, and
D. S.
Tawfik
,
PLoS Biol.
14
,
e1002396
(
2016
).
46.
L.
Xie
and
P. E.
Bourne
,
Proc. Natl. Acad. Sci. U. S. A.
105
,
5441
(
2008
).
47.
I.
Sillitoe
,
N.
Bordin
,
N.
Dawson
,
V. P.
Waman
,
P.
Ashford
,
H. M.
Scholes
,
C. S. M.
Pang
,
L.
Woodridge
,
C.
Rauer
,
N.
Sen
,
M.
Abbasian
,
S.
Le Cornu
,
S. D.
Lam
,
K.
Berka
,
I. H.
Varekova
,
R.
Svobodova
,
J.
Lees
, and
C. A.
Orengo
,
Nucleic Acids Res.
49
,
D266
(
2021
).
48.
A.
Hadzipasic
,
C.
Wilson
,
V.
Nguyen
,
N.
Kern
,
C.
Kim
,
W.
Pitsawong
,
J.
Villali
,
Y.
Zheng
, and
D.
Kern
,
Science
367
,
912
(
2020
).
49.
C.
Kisker
,
W.
Hinrichs
,
K.
Tovar
,
W.
Hillen
, and
W.
Saenger
,
J. Mol. Biol.
247
,
260
(
1995
).
50.
S. R.
Luckner
,
M.
Klotzsche
,
C.
Berens
,
W.
Hillen
, and
Y. A.
Muller
,
J. Mol. Biol.
368
,
780
(
2007
).
51.
J. C.
Evans
,
C.
Trujillo
,
Z.
Wang
,
H.
Eoh
,
S.
Ehrt
,
D.
Schnappinger
,
H. I. M.
Boshoff
,
K. Y.
Rhee
,
C. E.
Barry
, and
V.
Mizrahi
,
ACS Infect. Dis.
2
,
958
(
2016
).
52.
M. C.
Taylor
,
H.
Kaur
,
B.
Blessington
,
J. M.
Kelly
, and
S. R.
Wilkinson
,
Biochem. J.
409
,
563
(
2008
).
53.
R.
Yoshino
,
N.
Yasuo
,
Y.
Hagiwara
,
T.
Ishida
,
D. K.
Inaoka
,
Y.
Amano
,
Y.
Tateishi
,
K.
Ohno
,
I.
Namatame
, and
T.
Niimi
, “
Discovering a hidden binding site of spermidine synthase inhibitors for Chagas disease by combining molecular simulations and X-ray crystallography
,” ChemRxiv (
2021
).
54.
A. R.
Chang
,
C. M.
Ferrer
, and
R.
Mostoslavsky
,
Physiol. Rev.
100
,
145
(
2020
).
55.
Z.
Huang
,
J.
Zhao
,
W.
Deng
,
Y.
Chen
,
J.
Shang
,
K.
Song
,
L.
Zhang
,
C.
Wang
,
S.
Lu
,
X.
Yang
,
B.
He
,
J.
Min
,
H.
Hu
,
M.
Tan
,
J.
Xu
,
Q.
Zhang
,
J.
Zhong
,
X.
Sun
,
Z.
Mao
,
H.
Lin
,
M.
Xiao
,
Y. E.
Chin
,
H.
Jiang
,
Y.
Xu
,
G.
Chen
, and
J.
Zhang
,
Nat. Chem. Biol.
14
,
1118
(
2018
).
56.
F.
Paladini
,
M. T.
Fiorillo
,
V.
Tedeschi
,
B.
Mattorre
, and
R.
Sorrentino
,
Front. Immunol.
11
,
1576
(
2020
).
57.
R.
Arya
,
Z.
Maben
,
D.
Rane
,
A.
Ali
, and
L. J.
Stern
,
ACS Chem. Biol.
17
,
1756
(
2022
).

Supplementary Material

You do not currently have access to this content.