Semiempirical quantum chemistry has recently seen a renaissance with applications in high-throughput virtual screening and machine learning. The simplest semiempirical model still in widespread use in chemistry is Hückel’s π-electron molecular orbital theory. In this work, we implemented a Hückel program using differentiable programming with the JAX framework based on limited modifications of a pre-existing NumPy version. The auto-differentiable Hückel code enabled efficient gradient-based optimization of model parameters tuned for excitation energies and molecular polarizabilities, respectively, based on as few as 100 data points from density functional theory simulations. In particular, the facile computation of the polarizability, a second-order derivative, via auto-differentiation shows the potential of differentiable programming to bypass the need for numeric differentiation or derivation of analytical expressions. Finally, we employ gradient-based optimization of atom identity for inverse design of organic electronic materials with targeted orbital energy gaps and polarizabilities. Optimized structures are obtained after as little as 15 iterations using standard gradient-based optimization algorithms.

1.
R. S.
Mulliken
, “
Molecular scientists and molecular science: Some reminiscences
,”
J. Chem. Phys.
43
,
S2
S11
(
1965
).
2.
P.-O.
Löwdin
, “
Present situation of quantum chemistry
,”
J. Phys. Chem.
61
,
55
68
(
1957
).
3.
W.
Thiel
, “
Semiempirical quantum–chemical methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
4
(
2
),
145
157
(
2014
).
4.
E.
Hückel
, “
Quantentheoretische beiträge zum benzolproblem
,”
Z. Phys.
70
,
204
286
(
1931
).
5.
E.
Hückel
, “
Quanstentheoretische beiträge zum benzolproblem. II
,”
Z. Phys.
72
,
310
337
(
1931
).
6.
E.
Hückel
, “
Quantentheoretische beiträge zum problem der aromatischen und ungesättigten verbindungen. III
,”
Z. Phys.
76
,
628
648
(
1932
).
7.
E.
Hückel
, “
Die freien radikale der organischen chemie. IV
,”
Z. Phys.
83
,
632
668
(
1933
).
8.
A.
Streitwieser
,
Molecular Orbital Theory for Organic Chemists
(
Wiley
,
New York
,
1961
).
9.
B.
Andes Hess
,
L. J.
Schaad
, and
C. W.
Holyoke
, “
On the aromaticity of annulenones
,”
Tetrahedron
28
,
5299
5305
(
1972
).
10.
F. A.
van Catledge
, “
A Pariser-Parr-Pople-based set of Hueckel molecular orbital parameters
,”
J. Org. Chem.
45
,
4801
4802
(
1980
).
11.
I.
Fleming
,
Molecular Orbitals and Organic Chemical Reactions: Reference Edition
(
Wiley
,
Chichester, United Kingdom
,
2010
).
12.
P.
Klán
and
J.
Wirz
,
Photochemistry of Organic Compounds: From Concepts to Practice
(
Wiley
,
2009
).
13.
C. S.
Anstöter
and
J. R. R.
Verlet
, “
A Hueckel model for the excited-sate dynamics of a protein chromophore developed using photoelectron imaging
,”
Acc. Chem. Res.
55
(
9
),
1205
1213
(
2022
).
14.
J. A. N. F.
Gomes
and
R. B.
Mallion
, “
Aromaticity and ring currents
,”
Chem. Rev.
101
(
5
),
1349
1384
(
2001
).
15.
B.
Sanchez-Lengeling
and
A.
Aspuru-Guzik
, “
Inverse molecular design using machine learning: Generative models for matter engineering
,”
Science
361
,
360
365
(
2018
).
16.
D.
Xiao
,
W.
Yang
, and
D. N.
Beratan
, “
Inverse molecular design in a tight-binding framework
,”
J. Chem. Phys.
129
(
4
),
044106
(
2008
).
17.
A. G.
Baydin
,
B. A.
Pearlmutter
,
A. A.
Radul
, and
J. M.
Siskind
, “
Automatic differentiation in machine learning: A survey
,”
J. Mach. Learn. Res.
18
,
1
43
(
2018
); available at https://jmlr.org/papers/v18/17-468.html.
18.
T.
Tamayo-Mendoza
,
C.
Kreisbeck
,
R.
Lindh
, and
A.
Aspuru-Guzik
, “
Automatic differentiation in quantum chemistry with applications to fully variational Hartree–Fock
,”
ACS Cent. Sci.
4
(
5
),
559
566
(
2018
).
19.
X.
Zhang
and
G. K.-L.
Chan
, “
Differentiable quantum chemistry with PySCF for molecules and materials at the mean-field level and beyond
,”
J. Chem. Phys.
157
,
204801
(
2022
).
20.
U.
Ekström
,
L.
Visscher
,
R.
Bast
,
A. J.
Thorvaldsen
, and
K.
Ruud
, “
Arbitrary-order density functional response theory from automatic differentiation
,”
J. Chem. Theory Comput.
6
(
7
),
1971
1980
(
2010
).
21.
M. F.
Kasim
,
S.
Lehtola
, and
S. M.
Vinko
, “
DQC: A python program package for differentiable quantum chemistry
,”
J. Chem. Phys.
156
,
084801
(
2021
).
22.
L.
Li
,
S.
Hoyer
,
R.
Pederson
,
R.
Sun
,
E. D.
Cubuk
,
P.
Riley
, and
K.
Burke
, “
Kohn-Sham equations as regularizer: Building prior knowledge into machine-learned physics
,”
Phys. Rev. Lett.
126
,
036401
(
2021
).
23.
M. F.
Kasim
and
S. M.
Vinko
, “
Learning the exchange-correlation functional from nature with fully differentiable density functional theory
,”
Phys. Rev. Lett.
127
,
126403
(
2021
).
24.
L.
Zhao
and
E.
Neuscamman
, “
Excited state mean-field theory without automatic differentiation
,”
J. Chem. Phys.
152
(
20
),
204112
(
2020
).
25.
A.
Yachmenev
and
S. N.
Yurchenko
, “
Automatic differentiation method for numerical construction of the rotational-vibrational Hamiltonian as a power series in the curvilinear internal coordinates using the Eckart frame
,”
J. Chem. Phys.
143
(
1
),
014105
(
2015
).
26.
A. S.
Abbott
,
B. Z.
Abbott
,
J. M.
Turney
, and
H. F.
Schaefer
, “
Arbitrary-order derivatives of quantum chemical methods via automatic differentiation
,”
J. Phys. Chem. Lett.
12
(
12
),
3232
3239
(
2021
).
27.
V.
Bergholm
,
J.
Izaac
,
M.
Schuld
,
C.
Gogolin
,
M. S.
Alam
,
S.
Ahmed
,
J. M.
Arrazola
,
C.
Blank
,
A.
Delgado
,
S.
Jahangiri
,
K.
McKiernan
,
J. J.
Meyer
,
Z.
Niu
,
A.
Száva
, and
N.
Killoran
, “
PennyLane: Automatic differentiation of hybrid quantum-classical computations
,” arXiv:1811.04968 (
2020
).
28.
F.
Pavošević
and
S.
Hammes-Schiffer
, “
Automatic differentiation for coupled cluster methods
,” arXiv:2011.11690 (
2020
).
29.
G. F.
von Rudorff
, “
Arbitrarily accurate quantum alchemy
,”
J. Chem. Phys.
155
(
22
),
224103
(
2021
).
30.
N.
Fedik
,
R.
Zubatyuk
,
M.
Kulichenko
,
N.
Lubbers
,
J. S.
Smith
,
B.
Nebgen
,
R.
Messerly
,
Y. W.
Li
,
A. I.
Boldyrev
,
K.
Barros
,
O.
Isayev
, and
S.
Tretiak
, “
Extending machine learning beyond interatomic potentials for predicting molecular properties
,”
Nat. Rev. Chem.
6
,
653
(
2022
).
31.
R. A.
Vargas-Hernández
,
R. T. Q.
Chen
,
K. A.
Jung
, and
P.
Brumer
, “
Fully differentiable optimization protocols for non-equilibrium steady states
,”
New J. Phys.
23
,
123006
(
2021
).
32.
R. A.
Vargas-Hernández
,
R. T. Q.
Chen
,
K. A.
Jung
, and
P.
Brumer
, “
Inverse design of dissipative quantum steady-states with implicit differentiation
,” arXiv:2011.12808 (
2020
).
33.
N.
Yoshikawa
and
M.
Sumita
, “
Automatic differentiation for the direct minimization approach to the Hartree–Fock method
,”
J. Phys. Chem. A
126
(
45
),
8487
8493
(
2022
).
34.
S.
Bac
,
A.
Patra
,
K. J.
Kron
, and
S.
Mallikarjun Sharada
, “
Recent advances toward efficient calculation of higher nuclear derivatives in quantum chemistry
,”
J. Phys. Chem. A
126
(
43
),
7795
7805
(
2022
).
35.
K.
Inui
and
Y.
Motome
, “
Inverse Hamiltonian design by automatic differentiation
,” arXiv:2203.07157 (
2022
).
36.
R.
Steiger
,
C. H.
Bischof
,
B.
Lang
, and
W.
Thiel
, “
Using automatic differentiation to compute derivatives for a quantum-chemical computer program
,”
Future Gener. Comput. Syst.
21
(
8
),
1324
1332
(
2005
).
37.
G.
Zhou
,
B.
Nebgen
,
N.
Lubbers
,
W.
Malone
,
A. M. N.
Niklasson
, and
S.
Tretiak
, “
Graphics processing unit-accelerated semiempirical Born Oppenheimer molecular dynamics using PyTorch
,”
J. Chem. Theory Comput.
16
,
4951
4962
(
2020
).
38.
T.
Zubatiuk
,
B.
Nebgen
,
N.
Lubbers
,
J. S.
Smith
,
R.
Zubatyuk
,
G.
Zhou
,
C.
Koh
,
K.
Barros
,
O.
Isayev
, and
S.
Tretiak
, “
Machine learned Hückel theory: Interfacing physics and deep neural networks
,”
J. Chem. Phys.
154
(
24
),
244108
(
2021
).
39.
C. H.
Pham
,
R. K.
Lindsey
,
L. E.
Fried
, and
N.
Goldman
, “
High-accuracy semiempirical quantum models based on a minimal training set
,”
J. Phys. Chem. Lett.
13
(
13
),
2934
2942
(
2022
).
40.
G.
Zhou
,
N.
Lubbers
,
K.
Barros
,
S.
Tretiak
, and
B.
Nebgen
, “
Deep learning of dynamically responsive chemical Hamiltonians with semiempirical quantum mechanics
,”
Proc. Natl. Acad. Sci. U. S. A.
119
(
27
),
e2120333119
(
2022
).
41.
C. R.
Harris
,
K. J.
Millman
,
S. J.
van der Walt
,
R.
Gommers
,
P.
Virtanen
,
D.
Cournapeau
,
E.
Wieser
,
J.
Taylor
,
S.
Berg
,
N. J.
Smith
,
R.
Kern
,
M.
Picus
,
S.
Hoyer
,
M. H.
van Kerkwijk
,
M.
Brett
,
A.
Haldane
,
J. F.
del Río
,
M.
Wiebe
,
P.
Peterson
,
P.
Gérard-Marchant
,
K.
Sheppard
,
T.
Reddy
,
W.
Weckesser
,
H.
Abbasi
,
C.
Gohlke
, and
T. E.
Oliphant
, “
Array programming with NumPy
,”
Nature
585
,
357
362
(
2020
).
42.
J.
Bradbury
,
R.
Frostig
,
P.
Hawkins
,
M. J.
Johnson
,
C.
Leary
,
D.
Maclaurin
, and
S.
Wanderman-Milne
(
2018
). “
JAX: Composable transformations of Python+NumPy programs
,” Github. http://github.com/google/jax.
43.
B.
Ramsundar
,
D.
Krishnamurthy
, and
V.
Viswanathan
, “
Differentiable physics: A position piece
,” arXiv:2109.07573 (
2021
).
44.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: Large-scale machine learning on heterogeneous systems
,” Software available from tensorflow.org,
2015
45.
A.
Paszke
,
S.
Gross
,
F.
Massa
,
A.
Lerer
,
J.
Bradbury
,
G.
Chanan
,
T.
Killeen
,
Z.
Lin
,
N.
Gimelshein
,
L.
Antiga
,
A.
Desmaison
,
A.
Köpf
,
E.
Yang
,
Z.
DeVito
,
M.
Raison
,
A.
Tejani
,
S.
Chilamkurthy
,
B.
Steiner
,
L.
Fang
,
J.
Bai
, and
S.
Chintala
, “
PyTorch: An imperative style, high-performance deep learning library
,” in
33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada
(Curran Associates, Inc.,
2019
), Vol. 32; available at https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.
46.
K.
Yates
, in
Hückel Molecular Orbital Theory
, edited by
K.
Yates
(
Academic Press
,
1978
), pp.
27
87
.
47.
J.
Pople
and
D.
Beveridge
,
Approximate Molecular Orbital Theory
, McGraw-Hill Series in Advanced Chemistry (
McGraw-Hill
,
1970
).
48.
H. D.
Cohen
and
C. C. J.
Roothaan
, “
Electric dipole polarizability of atoms by the Hartree-Fock method. I. Theory for closed-shell systems
,”
J. Chem. Phys.
43
(
10
),
S34
S39
(
1965
).
49.
J. M.
André
,
J.
Delhalle
,
J. G.
Fripiat
,
G.
Hennico
, and
L.
Piela
, “
Calculations of molecular polarizabilities from electric-field-variant atomic orbitals: An analysis of the problem and its application to the hydrogen molecule and to the alkane series
,”
Int. J. Quantum Chem.
34
(
S22
),
665
678
(
1988
).
50.
H. A.
Kurtz
,
J. J. P.
Stewart
, and
K. M.
Dieter
, “
Calculation of the nonlinear optical properties of molecules
,”
J. Comput. Chem.
11
(
1
),
82
87
(
1990
).
51.
D.
Jacquemin
,
B.
Champagne
, and
J. M.
André
, “
Electron correlation effects upon the static (hyper)polarizabilities of push-pull conjugated polyenes and polyynes
,”
Int. J. Quantum Chem.
65
(
5
),
679
688
(
1997
).
52.
H. A.
Kurtz
and
D. S.
Dudis
, “
Quantum mechanical methods for predicting nonlinear optical properties
,” in
Reviews in Computational Chemistry
, edited by
K. B.
Lipkowitz
and
D. B.
Boyd
(
John Wiley & Sons
,
Hoboken, NJ
,
2007
), pp.
241
279
.
53.
M.
Blondel
,
Q.
Berthet
,
M.
Cuturi
,
R.
Frostig
,
S.
Hoyer
,
F.
Llinares-López
,
F.
Pedregosa
, and
J.-P.
Vert
, “
Efficient and modular implicit differentiation
,” arXiv:2105.15183 (
2021
).
54.
I.
Loshchilov
and
F.
Hutter
, “
Decoupled weight decay regularization
,” in
International Conference on Learning Representations
,
2019
.
55.

Vector of length d where all its entries are equal to 0 except one that has a value of 1, e.g., [0000100] or [0100].

56.
F.
Eisenlohr
, “
Eine neuberechnung der atomrefraktionen. I
,”
Z. Phys. Chem.
75U
(
1
),
585
607
(
1911
).
57.
A. L.
von Steiger
, “
Ein beitrag zur summationsmethodik der molekularrefraktionen, besonders bei aromatischen kohlenwasserstoffen
,”
Ber. Dtsch. Chem. Ges. (A, B Ser.)
54
(
6
),
1381
1393
(
1921
).
58.
P.
Schwerdtfeger
and
J. K.
Nagle
, “
2018 table of static dipole polarizabilities of the neutral elements in the periodic table
,”
Mol. Phys.
117
(
9-12
),
1200
1225
(
2019
).
59.
A.
Krawczuk
,
D.
Pérez
, and
P.
Macchi
, “
PolaBer: A program to calculate and visualize distributed atomic polarizabilities based on electron density partitioning
,”
J. Appl. Crystallogr.
47
,
1452
1458
(
2014
).
60.
E.
Heilbronner
and
H.
Bock
,
The HMO Model and its Application: Basis and Manipulation
(
Wiley
,
1976
).
61.
W.
Gao
,
T.
Fu
,
J.
Sun
, and
C. W.
Coley
, “
Sample efficiency matters: A benchmark for practical molecular optimization
,” arXiv:2206.12411 (
2022
).
62.
F.
Häse
,
L. M.
Roch
, and
A.
Aspuru-Guzik
, “
Chimera: Enabling hierarchy based multi-objective optimization for self-driving laboratories
,”
Chem. Sci.
9
,
7642
7655
(
2018
).
63.
R. J.
Hickman
,
M.
Aldeghi
,
F.
Häse
, and
A.
Aspuru-Guzik
, “
Bayesian optimization with known experimental and design constraints for chemistry applications
,”
Digital Discovery
1
,
732
(
2022
).
64.
M.
Seifrid
,
R. J.
Hickman
,
A.
Aguilar-Granda
,
C.
Lavigne
,
J.
Vestfrid
,
T. C.
Wu
,
T.
Gaudin
,
E. J.
Hopkins
, and
A.
Aspuru-Guzik
, “
Routescore: Punching the ticket to more efficient materials development
,”
ACS Cent. Sci.
8
(
1
),
122
131
(
2022
).
65.
H.
Tao
,
T.
Wu
,
S.
Kheiri
,
M.
Aldeghi
,
A.
Aspuru‐Guzik
, and
E.
Kumacheva
, “
Self-driving platform for metal nanoparticle synthesis: Combining microfluidics and machine learning
,”
Adv. Funct. Mater.
31
(
51
),
2106725
(
2021
).
66.
R. A.
Vargas-Hernández
,
C.
Chuang
, and
P.
Brumer
, “
Multi-objective optimization for retinal photoisomerization models with respect to experimental observables
,”
J. Chem. Phys.
155
(
23
),
234109
(
2021
).
67.
J.-A.
Désidéri
, “
Multiple-gradient descent algorithm (MGDA) for multiobjective optimization
,”
C. R. Math.
350
(
5
),
313
318
(
2012
).
68.
M.
Kaisa
,
Nonlinear Multiobjective Optimization
, Volume 12 of International Series in Operations Research and Management Science (
Kluwer Academic Publishers
,
Boston
,
1999
).
69.
G. F.
von Rudorff
and
O. A.
von Lilienfeld
, “
Alchemical perturbation density functional theory
,”
Phys. Rev. Res.
2
,
023220
(
2020
).
70.
C.
Shen
,
M.
Krenn
,
S.
Eppel
, and
A.
Aspuru-Guzik
, “
Deep molecular dreaming: Inverse machine learning for de-novo molecular design and interpretability with surjective representations
,”
Mach. Learn.: Sci. Technol.
2
,
03LT02
(
2021
).
71.
H.
Longuet-Higgins
and
L.
Salem
, “
The alternation of bond lengths in long conjugated chain molecules
,”
Proc. R. Soc. London, Ser. A
251
,
172
185
(
1959
).
72.
W. P.
Su
,
J. R.
Schrieffer
, and
A. J.
Heeger
, “
Solitons in polyacetylene
,”
Phys. Rev. Lett.
42
,
1698
1701
(
1979
).
73.
A. J.
Heeger
,
S.
Kivelson
,
J. R.
Schrieffer
, and
W.-P.
Su
, “
Solitons in conducting polymers
,”
Rev. Mod. Phys.
60
,
781
850
(
1988
).
74.
F. H.
Allen
,
O.
Kennard
,
D. G.
Watson
,
L.
Brammer
,
A. G.
Orpen
, and
R.
Taylor
, “
Tables of bond lengths determined by X-ray and neutron diffraction. I. Bond lengths in organic compounds
,”
J. Chem. Soc., Perkin Trans. 2
1987
,
S1
S19
.
75.
L. Z.
Stolarczyk
and
T. M.
Krygowski
, “
Augmented Hueckel molecular orbital model of π-electron systems: From topology to metric. I. General theory
,”
J. Phys. Org. Chem.
34
(
3
),
e4154
(
2021
).
76.
J. H.
Kwapisz
and
L. Z.
Stolarczyk
, “
Applications of Hückel-Su-Schrieffer-Heeger method
,”
Struct. Chem.
32
,
1393
1406
(
2021
).
77.
L. C.
Blum
and
J.-L.
Reymond
, “
970 million druglike small molecules for virtual screening in the chemical universe database GDB-13
,”
J. Am. Chem. Soc.
131
(
25
),
8732
8733
(
2009
).
78.
M.
Casanova-Páez
and
L.
Goerigk
, “
Time-dependent long-range-corrected double-hybrid density functionals with spin-component and spin-opposite scaling: A comprehensive analysis of singlet–singlet and singlet–triplet excitation energies
,”
J. Chem. Theory Comput.
17
(
8
),
5165
5186
(
2021
).
79.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
80.
M.
Hessel
,
D.
Budden
,
F.
Viola
,
M.
Rosca
,
E.
Sezener
, and
T.
Hennigan
(
2020
), “
Optax: Composable gradient transformation and optimisation, in JAX!
,” Github. http://github.com/google/jax.
81.
E.
Caldeweyher
,
C.
Bannwarth
, and
S.
Grimme
, “
Extension of the D3 dispersion coefficient model
,”
J. Chem. Phys.
147
(
3
),
034112
(
2017
).
82.
E.
Caldeweyher
,
S.
Ehlert
,
A.
Hansen
,
H.
Neugebauer
,
S.
Spicher
,
C.
Bannwarth
, and
S.
Grimme
, “
A generally applicable atomic-charge dependent London dispersion correction
,”
J. Chem. Phys.
150
(
15
),
154122
(
2019
).
83.
E.
Caldeweyher
,
J.-M.
Mewes
,
S.
Ehlert
, and
S.
Grimme
, “
Extension and evaluation of the D4 London-dispersion model for periodic systems
,”
Phys. Chem. Chem. Phys.
22
,
8499
8512
(
2020
).
84.
T.
Hanser
,
C.
Barber
,
J. F.
Marchaland
, and
S.
Werner
, “
Applicability domain: Towards a more formal definition
,”
SAR QSAR Environ. Res.
27
,
865
881
(
2016
).

Supplementary Material

You do not currently have access to this content.