Pulsed lasers are a powerful tool for fabricating silicon carbide (SiC) that has a hard and brittle nature, but oxidation is usually unavoidable. This study presents an exploration of the oxidation mechanism of 4H–SiC in oxygen and water under different temperatures via reactive force field molecular dynamics. Single pulse irradiation experiments were conducted to study the oxygen content of the laser-affected zone through energy dispersive x-ray spectrometry. The results show that laser-induced thermal oxidation is a complex dynamic process with the interactions among H, C, O, and Si atoms. The oxidation zone includes an oxide layer, a graphite layer, and a C-rich layer. With an increase in oxygen concentration, the amorphous oxide layer changes from silicon oxide to silicon dioxide. In addition, the formation of carbon clusters at the interface between SiOx and C-rich layers promotes the desorption of the oxide layer. The mechanism revealed in this study provides theoretical guidance for high-quality processing of 4H–SiC at atomic and close-to-atomic scales.

1.
Y.
Shi
,
Y.
Sun
,
J.
Liu
,
J.
Tang
,
J.
Li
,
Z.
Ma
,
H.
Cao
,
R.
Zhao
,
Z.
Kou
,
K.
Huang
,
J.
Gao
, and
T.
Hou
,
Sens. Actuators, A
276
,
196
204
(
2018
).
2.
W.
Owens
,
D.
Merkel
,
F.
Sansoz
, and
D.
Fletcher
,
J. Am. Ceram. Soc.
98
,
4003
4009
(
2015
).
3.
T.
Kimoto
and
J. A.
Cooper
,
Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications
(
John Wiley & Sons
,
Singapore
,
2014
), pp.
11
15
.
4.
H.
Deng
,
K.
Endo
, and
K.
Yamamura
,
Sci. Rep.
5
,
8947
(
2015
).
5.
T. M.
Hoang
,
H.
Ishiwata
,
Y.
Masuyama
,
Y.
Yamazaki
,
K.
Kojima
,
S.-Y.
Lee
,
T.
Ohshima
,
T.
Iwasaki
,
D.
Hisamoto
, and
M.
Hatano
,
Appl. Phys. Lett.
118
,
044001
(
2021
).
6.
H.-J.
An
,
J.-S.
Wang
, and
F.-Z.
Fang
,
Adv. Manuf.
10
,
59
71
(
2022
).
7.
P.
Wang
,
J.
Wang
, and
F.
Fang
,
Nanomanuf. Metrol.
4
,
216
225
(
2021
).
8.
H.
An
,
J.
Wang
, and
F.
Fang
,
Opt. Laser Technol.
158
,
108863
(
2023
).
9.
F. Z.
Fang
,
Chin. Mech. Eng.
31
,
1009
1021
(
2020
).
10.
F.
Fang
,
Int. J. Extreme Manuf.
2
,
030201
(
2020
).
11.
F.
Fang
,
J. Manuf. Syst.
63
,
504
505
(
2022
).
12.
P.
Fan
,
S.
Goel
,
X.
Luo
, and
H. M.
Upadhyaya
,
Nanomanuf. Metrol.
5
,
39
49
(
2021
).
13.
M.
Suess
,
C.
Wilhelmi
,
M.
Salvo
,
V.
Casalegno
,
P.
Tatarko
, and
M.
Funke
,
Int. J. Appl. Ceram. Technol.
14
,
313
322
(
2017
).
14.
V.
Šimonka
,
A.
Hössinger
,
J.
Weinbub
, and
S.
Selberherr
,
J. Phys. Chem. A
121
,
8791
8798
(
2017
).
15.
D. M.
Lukin
,
C.
Dory
,
M. A.
Guidry
,
K. Y.
Yang
,
S. D.
Mishra
,
R.
Trivedi
,
M.
Radulaski
,
S.
Sun
,
D.
Vercruysse
,
G. H.
Ahn
, and
J.
Vučković
,
Nat. Photonics
14
,
330
334
(
2020
).
16.
N. S.
Jacobson
and
D. L.
Myers
,
Oxid. Met.
75
,
1
25
(
2011
).
17.
H. V.
Pham
,
Y.
Nagae
,
M.
Kurata
,
D.
Bottomley
, and
K.
Furumoto
,
J. Nucl. Mater.
529
,
151939
(
2020
).
18.
T.
Goto
,
Mater. Sci. Forum
522–523
,
27
36
(
2006
).
19.
K. A.
Terrani
,
B. A.
Pint
,
C. M.
Parish
,
C. M.
Silva
,
L. L.
Snead
,
Y.
Katoh
, and
N.
Jacobson
,
J. Am. Ceram. Soc.
97
,
2331
2352
(
2014
).
20.
R.
Liu
,
B.
Liu
,
K.
Zhang
,
M.
Liu
,
Y.
Shao
, and
C.
Tang
,
J. Nucl. Mater.
453
,
107
114
(
2014
).
21.
H.
Katsui
,
M.
Oguma
,
T.
Goto
, and
N.
Jacobson
,
J. Am. Ceram. Soc.
97
,
1633
1637
(
2014
).
22.
Y.
Xu
,
P.
Zhang
,
H.
Lu
, and
W.
Zhang
,
J. Eur. Ceram. Soc.
35
,
3401
3409
(
2015
).
23.
J.
Wang
,
L.
Zhang
,
Q.
Zeng
,
G. L.
Vignoles
, and
L.
Cheng
,
J. Phys.: Condens. Matter
22
,
265003
(
2010
).
24.
J.
Wang
,
F.
Fang
, and
L.
Li
,
Nanomanuf. Metrol.
5
,
240
249
(
2022
).
25.
T.
Yamasaki
,
N.
Tajima
,
T.
Kaneko
,
N.
Nishikawa
,
J.
Nara
,
T.
Schimizu
,
K.
Kato
, and
T.
Ohno
,
Mater. Sci. Forum
858
,
429
432
(
2016
).
26.
D. A.
Newsome
,
D.
Sengupta
,
H.
Foroutan
,
M. F.
Russo
, and
A. C. T.
van Duin
,
J. Phys. Chem. C
116
,
16111
16121
(
2012
).
27.
D. A.
Newsome
,
D.
Sengupta
, and
A. C. T.
van Duin
,
J. Phys. Chem. C
117
,
5014
5027
(
2013
).
28.
X.
Chen
,
Z.
Sun
,
Z.
Chen
,
Y.
Song
, and
X.
Niu
,
Comput. Mater. Sci.
191
,
110341
(
2021
).
29.
Z.
Cui
,
J.
Zhao
,
G.
Yao
,
Z.
Li
, and
D.
Wen
,
Phys. Fluids
34
,
052101
(
2022
).
30.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in’t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
,
Comput. Phys. Commun.
271
,
108171
(
2022
).
31.
A.
Stukowski
,
Modell. Simul. Mater. Sci. Eng.
18
,
015012
(
2010
).
32.
Y.
Sun
,
Y.-J.
Liu
, and
F.
Xu
,
Chin. Phys. B
24
,
096203
(
2015
).
33.
L.
Charpentier
,
M.
Balat-Pichelin
,
H.
Glénat
,
E.
Bêche
,
E.
Laborde
, and
F.
Audubert
,
J. Eur. Ceram. Soc.
30
,
2661
2670
(
2010
).
You do not currently have access to this content.