Using Brownian dynamics simulations, we investigate the effects of confinement, adsorption on surfaces, and ion–ion interactions on the response of confined electrolyte solutions to oscillating electric fields in the direction perpendicular to the confining walls. Nonequilibrium simulations allows to characterize the transitions between linear and nonlinear regimes when varying the magnitude and frequency of the applied field, but the linear response, characterized by the frequency-dependent conductivity, is more efficiently predicted from the equilibrium current fluctuations. To that end, we (rederive and) use the Green–Kubo relation appropriate for overdamped dynamics, which differs from the standard one for Newtonian or underdamped Langevin dynamics. This expression highlights the contributions of the underlying Brownian fluctuations and of the interactions of the particles between them and with external potentials. Although already known in the literature, this relation has rarely been used to date, beyond the static limit to determine the effective diffusion coefficient or the DC conductivity. The frequency-dependent conductivity always decays from a bulk-like behavior at high frequency to a vanishing conductivity at low frequency due to the confinement of the charge carriers by the walls. We discuss the characteristic features of the crossover between the two regimes, most importantly how the crossover frequency depends on the confining distance and the salt concentration, and the fact that adsorption on the walls may lead to significant changes both at high and low frequencies. Conversely, our results illustrate the possibility to obtain information on diffusion between walls, charge relaxation, and adsorption by analyzing the frequency-dependent conductivity.

1.
P.
Simon
and
Y.
Gogotsi
,
Nat. Mater.
19
,
1151
(
2020
).
2.
M.
Elimelech
and
W. A.
Phillip
,
Science
333
,
712
(
2011
).
3.
A.
Siria
,
M.-L.
Bocquet
, and
L.
Bocquet
,
Nat. Rev. Chem.
1
,
0091
(
2017
).
4.
M.
Simoncelli
,
N.
Ganfoud
,
A.
Sene
,
M.
Haefele
,
B.
Daffos
,
P.-L.
Taberna
,
M.
Salanne
,
P.
Simon
, and
B.
Rotenberg
,
Phys. Rev. X
8
,
021024
(
2018
).
5.
K.
Xiao
,
L.
Jiang
, and
M.
Antonietti
,
Joule
3
,
2364
(
2019
).
6.
Y.
Liu
,
Z.
Zhang
, and
S.
Wang
,
ACS ES&T Water
1
,
34
(
2021
).
7.
P.
Robin
,
N.
Kavokine
, and
L.
Bocquet
,
Science
373
,
687
(
2021
).
8.
X.
Liu
,
C.
Tournassat
,
S.
Grangeon
,
A. G.
Kalinichev
,
Y.
Takahashi
, and
M.
Marques Fernandes
,
Nat. Rev. Earth Environ.
3
,
461
(
2022
).
10.
F.
Bordi
,
C.
Cametti
, and
R. H.
Colby
,
J. Phys.: Condens. Matter
16
,
R1423
(
2004
).
11.
C.
Grosse
and
A. V.
Delgado
,
Curr. Opin. Colloid Interface Sci.
15
,
145
(
2010
).
12.
J.
Zhou
and
F.
Schmid
,
J. Phys.: Condens. Matter
24
,
464112
(
2012
).
13.
J.
Zhou
,
R.
Schmitz
,
B.
Dünweg
, and
F.
Schmid
,
J. Chem. Phys.
139
,
024901
(
2013
).
14.
J.
Zhou
and
F.
Schmid
,
Eur. Phys. J.: Spec. Top.
222
,
2911
(
2013
).
15.
J.
Merlin
and
J. F. L.
Duval
,
Phys. Chem. Chem. Phys.
16
,
15173
(
2014
).
16.
S.
Wang
,
J.
Zhang
,
O.
Gharbi
,
V.
Vivier
,
M.
Gao
, and
M. E.
Orazem
,
Nat. Rev. Methods Primers
1
,
41
(
2021
).
17.
V.
Vivier
and
M. E.
Orazem
,
Chem. Rev.
122
,
11131
(
2022
).
18.
19.
D.
Vasilescu
,
M.
Teboul
,
H.
Kranck
, and
F.
Gutmann
,
Electrochim. Acta
19
,
181
(
1974
).
20.
D. P.
Hoogerheide
,
S.
Garaj
, and
J. A.
Golovchenko
,
Phys. Rev. Lett.
102
,
256804
(
2009
).
21.
A.
Siria
,
P.
Poncharal
,
A.-L.
Biance
,
R.
Fulcrand
,
X.
Blase
,
S. T.
Purcell
, and
L.
Bocquet
,
Nature
494
,
455
(
2013
).
22.
A. H.
Laszlo
,
I. M.
Derrington
,
B. C.
Ross
,
H.
Brinkerhoff
,
A.
Adey
,
I. C.
Nova
,
J. M.
Craig
,
K. W.
Langford
,
J. M.
Samson
,
R.
Daza
,
K.
Doering
,
J.
Shendure
, and
J. H.
Gundlach
,
Nat. Biotechnol.
32
,
829
(
2014
).
23.
S. J.
Heerema
,
G. F.
Schneider
,
M.
Rozemuller
,
L.
Vicarelli
,
H. W.
Zandbergen
, and
C.
Dekker
,
Nanotechnology
26
,
074001
(
2015
).
24.
E.
Secchi
,
A.
Niguès
,
L.
Jubin
,
A.
Siria
, and
L.
Bocquet
,
Phys. Rev. Lett.
116
,
154501
(
2016
).
25.
U.
Bertocci
and
F.
Huet
,
Corrosion
51
,
131
(
1995
).
26.
M. A. G.
Zevenbergen
,
P. S.
Singh
,
E. D.
Goluch
,
B. L.
Wolfrum
, and
S. G.
Lemay
,
Anal. Chem.
81
,
8203
(
2009
).
27.
K.
Mathwig
,
D.
Mampallil
,
S.
Kang
, and
S. G.
Lemay
,
Phys. Rev. Lett.
109
,
118302
(
2012
).
28.
L.
Onsager
,
Trans. Faraday Soc.
23
,
341
(
1927
).
29.
L.
Onsager
,
J. Chem. Phys.
2
,
599
(
1934
).
30.
L.
Onsager
and
S. K.
Kim
,
J. Phys. Chem.
61
,
215
(
1957
).
32.
H. L.
Friedman
,
J. Chem. Phys.
42
,
462
(
1965
).
33.
O.
Bernard
,
W.
Kunz
,
P.
Turq
, and
L.
Blum
,
J. Phys. Chem.
96
,
398
(
1992
).
34.
O.
Bernard
,
W.
Kunz
,
P.
Turq
, and
L.
Blum
,
J. Phys. Chem.
96
,
3833
(
1992
).
35.
O.
Bernard
and
L.
Blum
,
J. Chem. Phys.
104
,
4746
(
1996
).
36.
J.-F.
Dufrêche
,
O.
Bernard
,
S.
Durand-Vidal
, and
P.
Turq
,
J. Phys. Chem. B
109
,
9873
(
2005
).
38.
D. S.
Dean
,
J. Phys. A: Math. Gen.
29
,
L613
(
1996
).
39.
V.
Démery
and
D. S.
Dean
,
J. Stat. Mech.: Theory Exp.
2016
,
023106
.
40.
J.-P.
Péraud
,
A. J.
Nonaka
,
J. B.
Bell
,
A.
Donev
, and
A. L.
Garcia
,
Proc. Natl. Acad. Sci. U. S. A.
114
,
10829
(
2017
).
41.
A.
Donev
,
A. L.
Garcia
,
J.-P.
Péraud
,
A. J.
Nonaka
, and
J. B.
Bell
,
Curr. Opin. Electrochem.
13
,
1
(
2019
).
42.
Y.
Avni
,
R. M.
Adar
,
D.
Andelman
, and
H.
Orland
,
Phys. Rev. Lett.
128
,
098002
(
2022
).
43.
J. E.
Anderson
,
J. Non-Cryst. Solids
172–174
,
1190
(
1994
).
44.
S. D.
Vidal
,
J. P.
Simonin
,
P.
Turq
, and
O.
Bernard
,
J. Phys. Chem.
99
,
6733
(
1995
).
45.
A.
Chandra
and
B.
Bagchi
,
J. Chem. Phys.
112
,
1876
(
2000
).
46.
T.
Yamaguchi
,
T.
Matsuoka
, and
S.
Koda
,
J. Chem. Phys.
127
,
234501
(
2007
).
47.
S. W.
Kowalczyk
,
A. Y.
Grosberg
,
Y.
Rabin
, and
C.
Dekker
,
Nanotechnology
22
,
315101
(
2011
).
48.
M.
Zorkot
,
R.
Golestanian
, and
D. J.
Bonthuis
,
Eur. Phys. J.: Spec. Top.
225
,
1583
(
2016
).
49.
M.
Zorkot
,
R.
Golestanian
, and
D. J.
Bonthuis
,
Nano Lett.
16
,
2205
(
2016
).
50.
M.
Zorkot
and
R.
Golestanian
,
J. Phys.: Condens. Matter
30
,
134001
(
2018
).
51.
S.
Gravelle
,
R. R.
Netz
, and
L.
Bocquet
,
Nano Lett.
19
,
7265
(
2019
).
52.
S.
Mahdisoltani
and
R.
Golestanian
,
Phys. Rev. Lett.
126
,
158002
(
2021
).
53.
S.
Marbach
,
J. Chem. Phys.
154
,
171101
(
2021
).
54.
D. T.
Limmer
,
C.
Merlet
,
M.
Salanne
,
D.
Chandler
,
P. A.
Madden
,
R.
van Roij
, and
B.
Rotenberg
,
Phys. Rev. Lett.
111
,
106102
(
2013
).
55.
L.
Scalfi
,
D. T.
Limmer
,
A.
Coretti
,
S.
Bonella
,
P. A.
Madden
,
M.
Salanne
, and
B.
Rotenberg
,
Phys. Chem. Chem. Phys.
22
,
10480
(
2020
).
56.
L.
Scalfi
,
M.
Salanne
, and
B.
Rotenberg
,
Annu. Rev. Phys. Chem.
72
,
189
(
2021
).
57.
G.
Pireddu
and
B.
Rotenberg
, “
Frequency-dependent impedance of nanocapacitors from electrode charge fluctuations as a probe of electrolyte dynamics
,” arXiv:2206.13322.
58.
M. Z.
Bazant
,
K.
Thornton
, and
A.
Ajdari
,
Phys. Rev. E
70
,
021506
(
2004
).
59.
M.
Janssen
and
M.
Bier
,
Phys. Rev. E
97
,
052616
(
2018
).
60.
C.
Chassagne
,
E.
Dubois
,
M. L.
Jiménez
,
J. P. M.
van der Ploeg
, and
J.
van Turnhout
,
Front. Chem.
4
,
30
(
2016
).
61.
A. J.
Asta
,
I.
Palaia
,
E.
Trizac
,
M.
Levesque
, and
B.
Rotenberg
,
J. Chem. Phys.
151
,
114104
(
2019
).
62.
K.
Ma
,
M.
Janssen
,
C.
Lian
, and
R.
van Roij
,
J. Chem. Phys.
156
,
084101
(
2022
).
63.
B.
Rotenberg
,
J.-F.
Dufrêche
, and
P.
Turq
,
J. Chem. Phys.
123
,
154902
(
2005
).
64.
I.
Pagonabarraga
,
B.
Rotenberg
, and
D.
Frenkel
,
Phys. Chem. Chem. Phys.
12
,
9566
(
2010
).
65.
B.
Rotenberg
,
I.
Pagonabarraga
, and
D.
Frenkel
,
Faraday Discuss.
144
,
223
(
2010
).
66.
L. D.
Site
,
C.
Holm
, and
N. F. A.
van der Vegt
, in
Multiscale Molecular Methods in Applied Chemistry
, Topics in Current Chemistry, edited by
B.
Kirchner
and
J.
Vrabec
(
Springer
,
Berlin, Heidelberg
,
2012
), pp.
251
294
.
67.
B.
Rotenberg
and
I.
Pagonabarraga
,
Mol. Phys.
111
,
827
(
2013
).
68.
A.
Chandra
,
D.
Wei
, and
G. N.
Patey
,
J. Chem. Phys.
99
,
2083
(
1993
).
69.
Y. W.
Tang
,
I.
Szalai
, and
K.-Y.
Chan
,
Mol. Phys.
100
,
1497
(
2002
).
70.
H.
Risken
, “
Fokker-Planck equation
,” in
The Fokker-Planck Equation: Methods of Solution and Applications
(
Springer
,
Berlin, Heidelberg
,
1996
), pp.
63
95
.
71.
M.
Jardat
,
O.
Bernard
,
P.
Turq
, and
G. R.
Kneller
,
J. Chem. Phys.
110
,
7993
(
1999
).
72.
M.
Jardat
,
S.
Durand-Vidal
,
P.
Turq
, and
G. R.
Kneller
,
J. Mol. Liq.
85
,
45
(
2000
).
73.
M.
Jardat
and
P.
Turq
,
Z. Phys. Chem.
218
,
699
(
2004
).
74.
V.
Dahirel
,
M.
Jardat
,
J. F.
Dufrêche
, and
P.
Turq
,
J. Chem. Phys.
131
,
234105
(
2009
).
75.
T.
Yamaguchi
,
T.
Akatsuka
, and
S.
Koda
,
J. Chem. Phys.
134
,
244506
(
2011
).
76.
M.
Jardat
,
B.
Hribar-Lee
, and
V.
Vlachy
,
Soft Matter
8
,
954
(
2012
).
77.
R. R.
Netz
,
Europhys. Lett.
63
,
616
(
2003
).
78.
V.
Lobaskin
and
R. R.
Netz
,
Europhys. Lett.
116
,
58001
(
2016
).
79.
B. U.
Felderhof
and
R. B.
Jones
,
Physica A
119
,
591
(
1983
).
80.
B. U.
Felderhof
and
R. B.
Jones
,
Physica A
146
,
417
(
1987
).
81.
C.
Contreras Aburto
and
G.
Nägele
,
J. Chem. Phys.
139
,
134109
(
2013
).
82.
R.
Joubaud
,
G. A.
Pavliotis
, and
G.
Stoltz
,
J. Stat. Phys.
158
,
1
(
2014
).
84.
W. A.
Steele
,
J. Phys. Chem.
82
,
817
(
1978
).
85.
J. J.
Magda
,
M.
Tirrell
, and
H. T.
Davis
,
J. Chem. Phys.
83
,
1888
(
1985
).
86.
J. J.
Magda
,
M.
Tirrell
, and
H. T.
Davis
,
J. Chem. Phys.
84
,
2901
(
1986
).
87.
P.
Banerjee
and
B.
Bagchi
,
J. Chem. Phys.
150
,
190901
(
2019
).
88.
A.
Saugey
,
L.
Joly
,
C.
Ybert
,
J. L.
Barrat
, and
L.
Bocquet
,
J. Phys.: Condens. Matter
17
,
S4075
(
2005
).
89.
J. W.
Swan
and
J. F.
Brady
,
Phys. Fluids
19
,
113306
(
2007
).
90.
S.
Delong
,
F.
Balboa Usabiaga
, and
A.
Donev
,
J. Chem. Phys.
143
,
144107
(
2015
).
91.
V.
Marry
,
B.
Rotenberg
, and
P.
Turq
,
Phys. Chem. Chem. Phys.
10
,
4802
(
2008
).
92.
P.
Simonnin
,
V.
Marry
,
B.
Noetinger
,
C.
Nieto-Draghi
, and
B.
Rotenberg
,
J. Phys. Chem. C
122
,
18484
(
2018
).
93.
E.
Mangaud
and
B.
Rotenberg
,
J. Chem. Phys.
153
,
044125
(
2020
).
94.
P.
Simonnin
,
B.
Noetinger
,
C.
Nieto-Draghi
,
V.
Marry
, and
B.
Rotenberg
,
J. Chem. Theory Comput.
13
,
2881
(
2017
).
95.
D. J.
Bonthuis
and
R. R.
Netz
,
Langmuir
28
,
16049
(
2012
).
96.
B.
Cui
and
A.
Zaccone
,
Phys. Rev. E
97
,
060102
(
2018
).
97.
D. R.
Ladiges
,
A.
Nonaka
,
K.
Klymko
,
G. C.
Moore
,
J. B.
Bell
,
S. P.
Carney
,
A. L.
Garcia
,
S. R.
Natesh
, and
A.
Donev
,
Phys. Rev. Fluids
6
,
044309
(
2021
).
98.
D. R.
Ladiges
,
J. G.
Wang
,
I.
Srivastava
,
A.
Nonaka
,
J. B.
Bell
,
S. P.
Carney
,
A. L.
Garcia
, and
A.
Donev
,
Phys. Rev. E
106
,
035104
(
2022
).
99.
I.
Tischler
,
F.
Weik
,
R.
Kaufmann
,
M.
Kuron
,
R.
Weeber
, and
C.
Holm
,
J. Comput. Sci.
63
,
101770
(
2022
).
100.
T.
Croxton
,
D. A.
McQuarrie
,
G. N.
Patey
,
G. M.
Torrie
, and
J. P.
Valleau
,
Can. J. Chem.
59
,
1998
(
1981
).
101.
Y.
Levin
and
J. E.
Flores-Mena
,
Europhys. Lett.
56
,
187
(
2001
).
102.
M.
Bier
,
J.
Zwanikken
, and
R.
van Roij
,
Phys. Rev. Lett.
101
,
046104
(
2008
).
103.
S.
Buyukdagli
,
M.
Manghi
, and
J.
Palmeri
,
Phys. Rev. E
81
,
041601
(
2010
).
104.
Y.
Levin
and
A. P. d.
Santos
,
J. Phys.: Condens. Matter
26
,
203101
(
2014
).
105.
H. S.
Antila
and
E.
Luijten
,
Phys. Rev. Lett.
120
,
135501
(
2018
).
106.
S.
Tyagi
,
A.
Arnold
, and
C.
Holm
,
J. Chem. Phys.
129
,
204102
(
2008
).
107.
A.
Arnold
,
K.
Breitsprecher
,
F.
Fahrenberger
,
S.
Kesselheim
,
O.
Lenz
, and
C.
Holm
,
Entropy
15
,
4569
(
2013
).
108.
K.
Barros
,
D.
Sinkovits
, and
E.
Luijten
,
J. Chem. Phys.
140
,
064903
(
2014
).
109.
J.
Liang
,
J.
Yuan
,
E.
Luijten
, and
Z.
Xu
,
J. Chem. Phys.
152
,
134109
(
2020
).
110.
J.
Yuan
,
H. S.
Antila
, and
E.
Luijten
,
J. Chem. Phys.
154
,
094115
(
2021
).
111.
O.
Maxian
,
R. P.
Peláez
,
L.
Greengard
, and
A.
Donev
,
J. Chem. Phys.
154
,
204107
(
2021
).
112.
J.
Liang
,
J.
Yuan
, and
Z.
Xu
,
Comput. Phys. Commun.
276
,
108332
(
2022
).
113.
J. P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
, 4th ed. (
Elsevier
,
Amsterdam
,
2013
).
114.
S.
Mandal
,
L.
Schrack
,
H.
Löwen
,
M.
Sperl
, and
T.
Franosch
,
Phys. Rev. Lett.
123
,
168001
(
2019
).
115.
S.
Koneshan
,
J. C.
Rasaiah
,
R. M.
Lynden-Bell
, and
S. H.
Lee
,
J. Phys. Chem. B
102
,
4193
(
1998
).
116.
A. P.
Thompson
,
H. M.
Aktulga
,
R.
Berger
,
D. S.
Bolintineanu
,
W. M.
Brown
,
P. S.
Crozier
,
P. J.
in ‘t Veld
,
A.
Kohlmeyer
,
S. G.
Moore
,
T. D.
Nguyen
,
R.
Shan
,
M. J.
Stevens
,
J.
Tranchida
,
C.
Trott
, and
S. J.
Plimpton
,
Comput. Phys. Commun.
271
,
108171
(
2022
).
117.
B.
Leimkuhler
and
C.
Matthews
,
Appl. Math. Res. Express
2013
,
34
(
2012
).
118.
I.-C.
Yeh
and
M. L.
Berkowitz
,
J. Chem. Phys.
111
,
3155
(
1999
).
119.
R.
Robinson
and
R.
Stokes
,
Electrolyte Solutions
(
Butterworths
,
1970
).
120.
I.
Palaia
,
A. J.
Asta
,
P. B.
Warren
,
B.
Rotenberg
, and
E.
Trizac
, arXiv:2301.00610 (
2023
).
121.
A.
Hashemi Amrei
,
S. C.
Bukosky
,
S. P.
Rader
,
W. D.
Ristenpart
, and
G. H.
Miller
,
Phys. Rev. Lett.
121
,
185504
(
2018
).
122.
J. R.
MacDonald
,
Trans. Faraday Soc.
66
,
943
(
1970
).
123.
A. A.
Kornyshev
and
M. A.
Vorotyntsev
,
Phys. Status Solidi A
39
,
573
(
1977
).
124.
A. A.
Kornyshev
and
M. A.
Vorotyntsev
,
Electrochim. Acta
26
,
303
(
1981
).
125.
B.
Cheng
and
D.
Frenkel
,
Phys. Rev. Lett.
125
,
130602
(
2020
).
126.
P.
Kreissl
,
C.
Holm
, and
R.
Weeber
,
Soft Matter
17
,
174
(
2021
).
127.
P.
Cats
,
R. S.
Sitlapersad
,
W. K.
den Otter
,
A. R.
Thornton
, and
R.
van Roij
,
J. Solution Chem.
51
,
296
(
2021
).
128.
J.
Dzubiella
,
G. P.
Hoffmann
, and
H.
Löwen
,
Phys. Rev. E
65
,
021402
(
2002
).
129.
J.
Chakrabarti
,
J.
Dzubiella
, and
H.
Löwen
,
Phys. Rev. E
70
,
012401
(
2004
).
130.
D.
Lesnicki
,
C. Y.
Gao
,
B.
Rotenberg
, and
D. T.
Limmer
,
Phys. Rev. Lett.
124
,
206001
(
2020
).
131.
D.
Lesnicki
,
C. Y.
Gao
,
D. T.
Limmer
, and
B.
Rotenberg
,
J. Chem. Phys.
155
,
014507
(
2021
).
You do not currently have access to this content.