Surface platinum hydride structures may exist and play a potentially important role during electrocatalysis and cathodic corrosion of Pt(111). Earlier work on platinum hydrides suggests that Pt may form clusters with multiple equivalents of hydrogen. Here, using thermodynamic methods and density functional theory, we compared several surface hydride structures on Pt(111). The structures contain multiple monolayers of hydrogen in or near the surface Pt layer. The hydrogen in these structures may bind the subsurface or reconstruct the surface both in the set of initial configurations and in the resulting (meta)stable structures. Multilayer stable configurations share one monolayer of subsurface H stacking between the top two Pt layers. The structure containing two monolayers (MLs) of H is formed at −0.29 V vs normal hydrogen electrode, is locally stable with respect to configurations with similar H densities, and binds H neutrally. Structures with 3 and 4 ML H form at −0.36 and −0.44 V, respectively, which correspond reasonably well to the experimental onset potential of cathodic corrosion on Pt(111). For the 3 ML configuration, the top Pt layer is reconstructed by interstitial H atoms to form a well-ordered structure with Pt atoms surrounded by four, five, or six H atoms in roughly square-planar and octahedral coordination patterns. Our work provides insight into the operando surface state during low-potential reduction reactions on Pt(111) and shows a plausible precursor for cathodic corrosion.

1.
A. I.
Yanson
,
P.
Rodriguez
,
N.
Garcia-Araez
,
R. V.
Mom
,
F. D.
Tichelaar
, and
M. T. M.
Koper
,
Angew. Chem., Int. Ed.
50
,
6346
(
2011
).
2.
P.
Rodriguez
,
F. D.
Tichelaar
,
M. T. M.
Koper
, and
A. I.
Yanson
,
J. Am. Chem. Soc.
133
,
17626
(
2011
).
3.
T. J. P.
Hersbach
,
C.
Ye
,
A. C.
Garcia
, and
M. T. M.
Koper
,
ACS Catal.
10
,
15104
(
2020
).
4.
5.
T. J. P.
Hersbach
,
A. I.
Yanson
, and
M. T. M.
Koper
,
Nat. Commun.
7
,
12653
(
2016
).
6.
S.
Popović
,
M.
Smiljanić
,
P.
Jovanovič
,
J.
Vavra
,
R.
Buonsanti
, and
N.
Hodnik
,
Angew. Chem., Int. Ed.
59
,
14736
(
2020
).
7.
B.
Vanrenterghem
,
M.
Bele
,
F. R.
Zepeda
,
M.
Šala
,
N.
Hodnik
, and
T.
Breugelmans
,
Appl. Catal., B
226
,
396
(
2018
).
8.
R.
Otsuka
and
M.
Uda
,
Corros. Sci.
9
,
703
(
1969
).
9.
E.
Bennett
,
J.
Monzó
,
J.
Humphrey
,
D.
Plana
,
M.
Walker
,
C.
McConville
,
D.
Fermin
,
A.
Yanson
, and
P.
Rodriguez
,
ACS Catal.
6
,
1533
(
2016
).
10.
I.
Evazzade
,
A.
Zagalskaya
, and
V.
Alexandrov
,
J. Phys. Chem. Lett.
13
,
3047
(
2022
).
11.
T. J. P.
Hersbach
,
I. T.
McCrum
,
D.
Anastasiadou
,
R.
Wever
,
F.
Calle-Vallejo
, and
M. T. M.
Koper
,
ACS Appl. Mater. Interfaces
10
,
39363
(
2018
).
12.
T.
Scheler
,
O.
Degtyareva
,
M.
Marqués
,
C. L.
Guillaume
,
J. E.
Proctor
,
S.
Evans
, and
E.
Gregoryanz
,
Phys. Rev. B
83
,
214106
(
2011
).
13.
N.
Hirao
,
F.
Hiroshi
,
O.
Yasuo
,
T.
Kenichi
, and
K.
Takumi
,
Acta Crystallogr., Sect. A: Found. Crystallogr.
64
,
C609
C610
(
2008
).
14.
M. E.
Martins
,
C. F.
Zinola
,
G.
Andreasen
,
R. C.
Salvarezza
, and
A. J.
Arvia
,
J. Electroanal. Chem.
445
,
135
(
1998
).
15.
K. A.
Stoerzinger
,
M.
Favaro
,
P. N.
Ross
,
J.
Yano
,
Z.
Liu
,
Z.
Hussain
, and
E. J.
Crumlin
,
J. Phys. Chem. B
122
,
864
(
2018
).
16.
S.
Hong
,
T. S.
Rahman
,
R.
Heid
, and
K. P.
Bohnen
,
Surf. Sci.
587
,
41
(
2005
).
17.
18.
C.
Mager-Maury
,
G.
Bonnard
,
C.
Chizallet
,
P.
Sautet
, and
P.
Raybaud
,
ChemCatChem
3
,
200
(
2011
).
19.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
20.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
21.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
22.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
23.
N.
Arulmozhi
,
S.
Hanselman
,
V.
Tudor
,
X.
Chen
,
D.
van Velden
,
G. F.
Schneider
,
F.
Calle-Vallejo
, and
M. T. M.
Koper
, in
Observing What Cannot Be Observed: Computational Electrochemistry from Carbon to Hydrogen
, edited by
S.
Hanselman
(
Scholarly Publications Leiden University
,
Leiden
,
2022
), pp.
79
100
.
24.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
25.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
26.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
27.
J. K.
Nørskov
,
J.
Rossmeisl
,
A.
Logadottir
,
L.
Lindqvist
,
J. R.
Kitchin
,
T.
Bligaard
, and
H.
Jónsson
,
J. Phys. Chem. B
108
,
17886
(
2004
).
28.
J.
Neugebauer
and
M.
Scheffler
,
Phys. Rev. B
46
,
16067
(
1992
).
29.
H. J.
Monkhorst
and
J. D.
Pack
,
Phys. Rev. B
13
,
5188
(
1976
).
30.
W.
Tang
,
E.
Sanville
, and
G.
Henkelman
,
J. Phys.: Condens. Matter
21
,
084204
(
2009
).
31.
A.
van de Walle
and
G.
Ceder
,
Phys. Rev. B
59
,
14992
(
1999
).
32.
S.
Heiles
and
R. L.
Johnston
,
Int. J. Quantum Chem.
113
,
2091
(
2013
).
33.
M.
Jäger
,
R.
Schäfer
, and
R. L.
Johnston
,
Adv. Phys.: X
3
,
1516514
(
2018
).
34.
J.
Zhang
,
V.-A.
Glezakou
,
R.
Rousseau
, and
M.-T.
Nguyen
,
J. Chem. Theory Comput.
16
,
3947
(
2020
).
35.
R.
Peverati
and
D. G.
Truhlar
,
Philos. Trans. R. Soc., A
372
,
20120476
(
2014
).
36.
J. N.
Mills
,
I. T.
McCrum
, and
M. J.
Janik
,
Phys. Chem. Chem. Phys.
16
,
13699
(
2014
).
37.
M. M.
Elnagar
,
T.
Jacob
, and
L. A.
Kibler
,
Electrochem. Sci. Adv.
(
published online
) (
2021
).
38.
M. M.
Elnagar
,
J. M.
Hermann
,
T.
Jacob
, and
L. A.
Kibler
,
Curr. Opin. Electrochem.
27
,
100696
(
2021
).
39.
M. D.
Pohl
,
S.
Watzele
,
F.
Calle-Vallejo
, and
A. S.
Bandarenka
,
ACS Omega
2
,
8141
(
2017
).
40.
N.
Arulmozhi
,
T. J. P.
Hersbach
, and
M. T. M.
Koper
,
Proc. Natl. Acad. Sci. U. S. A.
117
,
32267
(
2020
).

Supplementary Material

You do not currently have access to this content.