Weighted ensemble (WE) is an enhanced sampling method based on periodically replicating and pruning trajectories generated in parallel. WE has grown increasingly popular for computational biochemistry problems due, in part, to improved hardware and accessible software implementations. Algorithmic and analytical improvements have played an important role, and progress has accelerated in recent years. Here, we discuss and elaborate on the WE method from a mathematical perspective, highlighting recent results that enhance the computational efficiency. The mathematical theory reveals a new strategy for optimizing trajectory management that approaches the best possible variance while generalizing to systems of arbitrary dimension.

1.
G. A.
Huber
and
S.
Kim
, “
Weighted-ensemble Brownian dynamics simulations for protein association reactions
,”
Biophys. J.
70
,
97
110
(
1996
).
2.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
, “
The ‘weighted ensemble' path sampling method is statistically exact for a broad class of stochastic processes and binning procedures
,”
J. Chem. Phys.
132
,
054107
(
2010
).
3.
R. M.
Donovan
,
A. J.
Sedgewick
,
J. R.
Faeder
, and
D. M.
Zuckerman
, “
Efficient stochastic simulation of chemical kinetics networks using a weighted ensemble of trajectories
,”
J. Chem. Phys.
139
,
115105
(
2013
).
4.
B. W.
Zhang
,
D.
Jasnow
, and
D. M.
Zuckerman
, “
Efficient and verified simulation of a path ensemble for conformational change in a united-residue model of calmodulin
,”
Proc. Natl. Acad. Sci. U. S. A.
104
,
18043
18048
(
2007
).
5.
M. C.
Zwier
,
J. W.
Kaus
, and
L. T.
Chong
, “
Efficient explicit-solvent molecular dynamics simulations of molecular association kinetics: Methane/methane, Na(+)/Cl(−), methane/benzene, and k(+)/18-crown-6 ether
,”
J. Chem. Theory Comput.
7
,
1189
1197
(
2011
).
6.
E.
Suárez
,
S.
Lettieri
,
M. C.
Zwier
,
C. A.
Stringer
,
S. R.
Subramanian
,
L. T.
Chong
, and
D. M.
Zuckerman
, “
Simultaneous computation of dynamical and equilibrium information using a weighted ensemble of trajectories
,”
J. Chem. Theory Comput.
10
,
2658
2667
(
2014
).
7.
S. D.
Lotz
and
A.
Dickson
, “
Unbiased molecular dynamics of 11 min timescale drug unbinding reveals transition state stabilizing interactions
,”
J. Am. Chem. Soc.
140
,
618
628
(
2018
).
8.
T.
Sztain
,
S.-H.
Ahn
,
A. T.
Bogetti
,
L.
Casalino
,
J. A.
Goldsmith
,
E.
Seitz
,
R. S.
McCool
,
F. L.
Kearns
,
F.
Acosta-Reyes
,
S.
Maji
 et al, “
A glycan gate controls opening of the SARS-CoV-2 spike protein
,”
Nat. Chem.
13
,
963
968
(
2021
).
9.
H.
Kahn
and
T. E.
Harris
,
Estimation of Particle Transmission by Random Sampling
(
National Bureau of Standards Applied Mathematics Series
,
1951
), Vol. 12, pp.
27
30
.
10.
D.
Aristoff
, “
An ergodic theorem for the weighted ensemble method
,”
J. Appl. Probab.
59
,
152
166
(
2022
).
11.
R. J.
Webber
,
D.
Aristoff
, and
G.
Simpson
, “
A splitting method to reduce MCMC variance
,” arXiv:2011.13899 (
2020
).
12.
M. C.
Zwier
,
J. L.
Adelman
,
J. W.
Kaus
,
A. J.
Pratt
,
K. F.
Wong
,
N. B.
Rego
,
E.
Suárez
,
S.
Lettieri
,
D. W.
Wang
,
M.
Grabe
,
D. M.
Zuckerman
, and
L. T.
Chong
, “
WESTPA: An interoperable, highly scalable software package for weighted ensemble simulation and analysis
,”
J. Chem. Theory Comput.
11
,
800
809
(
2015
).
13.
J. D.
Russo
,
S.
Zhang
,
J. M.
Leung
,
A. T.
Bogetti
,
J. P.
Thompson
,
A. J.
DeGrave
,
P. A.
Torrillo
,
A.
Pratt
,
K. F.
Wong
,
J.
Xia
 et al, “
WESTPA 2.0: High-performance upgrades for weighted ensemble simulations and analysis of longer-timescale applications
,”
J. Chem. Theory Comput.
18
,
638
(
2021
).
14.
S. D.
Lotz
and
A.
Dickson
, “
Wepy: A flexible software framework for simulating rare events with weighted ensemble resampling
,”
ACS Omega
5
,
31608
31623
(
2020
).
15.
D.
Aristoff
,
F. G.
Jones
,
R. J.
Webber
,
G.
Simpson
, and
D. M.
Zuckerman
, Weightedensemble.jl, Julia package,
2020
.
16.
A.
Dickson
and
C. L.
Brooks
 III
, “
WExplore: Hierarchical exploration of high-dimensional spaces using the weighted ensemble algorithm
,”
J. Phys. Chem. B
118
,
3532
3542
(
2014
).
17.
J. L.
Adelman
,
A. L.
Dale
,
M. C.
Zwier
,
D.
Bhatt
,
L. T.
Chong
,
D. M.
Zuckerman
, and
M.
Grabe
, “
Simulations of the alternating access mechanism of the sodium symporter Mhp1
,”
Biophys. J.
101
,
2399
2407
(
2011
).
18.
B.
Abdul-Wahid
,
H.
Feng
,
D.
Rajan
,
R.
Costaouec
,
E.
Darve
,
D.
Thain
, and
J. A.
Izaguirre
, “
AWE-WQ: Fast-forwarding molecular dynamics using the accelerated weighted ensemble
,”
J. Chem. Inf. Model.
54
,
3033
3043
(
2014
).
19.
S.-H.
Ahn
,
A. A.
Ojha
,
R. E.
Amaro
, and
J. A.
McCammon
, “
Gaussian-Accelerated molecular dynamics with the weighted ensemble method: A hybrid method improves thermodynamic and kinetic sampling
,”
J. Chem. Theory Comput.
17
,
7938
7951
(
2021
).
20.
D.
Ray
and
I.
Andricioaei
, “
Weighted ensemble milestoning (WEM): A combined approach for rare event simulations
,”
J. Chem. Phys.
152
,
234114
(
2020
).
21.
D.
Ray
,
S. E.
Stone
, and
I.
Andricioaei
, “
Markovian weighted ensemble milestoning (M-WEM): Long-time kinetics from short trajectories
,”
J. Chem. Theory Comput.
18
,
79
(
2021
).
22.
A.
Ojha
,
S.
Thakur
,
S.-H.
Ahn
, and
R.
Amaro
, “
DeepWEST: Deep learning of kinetic models with the weighted ensemble simulation toolkit for enhanced kinetic and thermodynamic sampling
,” ChemRxiv (
2022
), https://chemrxiv.org/engage/chemrxiv/article-details/6238beac13d478049d96d707.
23.
M. J.
Tse
,
B. K.
Chu
,
C. P.
Gallivan
, and
E. L.
Read
, “
Rare-event sampling of epigenetic landscapes and phenotype transitions
,”
PLoS Comput. Biol.
14
,
e1006336
(
2018
).
24.
R.
Taylor
,
J. F.
Allard
, and
E.
Read
, “
Weighted ensemble simulation of kinetic segregation shows role of oligomers and close contacts
,”
Biophys. J.
121
,
149a
150a
(
2022
).
25.
D. M.
Zuckerman
and
L. T.
Chong
, “
Weighted ensemble simulation: Review of methodology, applications, and software
,”
Annu. Rev. Biophys.
46
,
43
57
(
2017
).
26.
D.
Bhatt
and
D. M.
Zuckerman
, “
Beyond microscopic reversibility: Are observable nonequilibrium processes precisely reversible?
J. Chem. Theory Comput.
7
,
2520
2527
(
2011
).
27.
A. S.
Saglam
and
L. T.
Chong
, “
Protein–protein binding pathways and calculations of rate constants using fully-continuous, explicit-solvent simulations
,”
Chem. Sci.
10
,
2360
2372
(
2019
).
28.
D.
Bhatt
,
B. W.
Zhang
, and
D. M.
Zuckerman
, “
Steady-state simulations using weighted ensemble path sampling
,”
J. Chem. Phys.
133
,
014110
(
2010
).
29.
W. C.
Swope
,
J. W.
Pitera
, and
F.
Suits
, “
Describing protein folding kinetics by molecular dynamics simulations. 1. Theory
,”
J. Phys. Chem. B
108
,
6571
6581
(
2004
).
30.
R. J.
Allen
,
P. B.
Warren
, and
P. R.
Ten Wolde
, “
Sampling rare switching events in biochemical networks
,”
Phys. Rev. Lett.
94
,
018104
(
2005
).
31.
F.
Cérou
and
A.
Guyader
, “
Adaptive multilevel splitting for rare event analysis
,”
Stochastic Anal. Appl.
25
,
417
443
(
2007
).
32.
F.
Cérou
,
A.
Guyader
,
T.
Lelièvre
, and
D.
Pommier
, “
A multiple replica approach to simulate reactive trajectories
,”
J. Chem. Phys.
134
,
054108
(
2011
).
33.
C.-E.
Bréhier
,
M.
Gazeau
,
L.
Goudenege
,
T.
Lelièvre
, and
M.
Rousset
, “
Unbiasedness of some generalized adaptive multilevel splitting algorithms
,”
Ann. Appl. Prob.
26
,
3559
3601
(
2016
).
34.
I.
Teo
,
C. G.
Mayne
,
K.
Schulten
, and
T.
Lelièvre
, “
Adaptive multilevel splitting method for molecular dynamics calculation of benzamidine-trypsin dissociation time
,”
J. Chem. Theory Comput.
12
,
2983
2989
(
2016
).
35.
C.
Giardina
,
J.
Kurchan
,
V.
Lecomte
, and
J.
Tailleur
, “
Simulating rare events in dynamical processes
,”
J. Stat. Phys.
145
,
787
811
(
2011
).
36.
E.
Guevara Hidalgo
,
T.
Nemoto
, and
V.
Lecomte
, “
Finite-time and finite-size scalings in the evaluation of large-deviation functions: Numerical approach in continuous time
,”
Phys. Rev. E
95
,
062134
(
2017
).
37.
U.
Ray
,
G. K.-L.
Chan
, and
D. T.
Limmer
, “
Importance sampling large deviations in nonequilibrium steady states. I
,”
J. Chem. Phys.
148
,
124120
(
2018
).
38.
J. M.
Bello-Rivas
and
R.
Elber
, “
Exact milestoning
,”
J. Chem. Phys.
142
,
094102
(
2015
).
39.
D.
Aristoff
,
J. M.
Bello-Rivas
, and
R.
Elber
, “
A mathematical framework for exact milestoning
,”
Multiscale Model. Simul.
14
,
301
322
(
2016
).
40.
A.
Warmflash
,
P.
Bhimalapuram
, and
A. R.
Dinner
, “
Umbrella sampling for nonequilibrium processes
,”
J. Chem. Phys.
127
,
154112
(
2007
).
41.
T. S.
van Erp
,
D.
Moroni
, and
P. G.
Bolhuis
, “
A novel path sampling method for the calculation of rate constants
,”
J. Chem. Phys.
118
,
7762
7774
(
2003
).
42.
D. S.
Abbot
,
R. J.
Webber
,
S.
Hadden
,
D.
Seligman
, and
J.
Weare
, “
Rare event sampling improves mercury instability statistics
,”
Astrophys. J.
923
,
236
(
2021
).
43.
J.
Finkel
,
R. J.
Webber
,
E. P.
Gerber
,
D. S.
Abbot
, and
J.
Weare
, “
Learning forecasts of rare stratospheric transitions from short simulations
,”
Mon. Weather Rev.
149
,
3647
3669
(
2021
).
44.
J.
Finkel
,
R. J.
Webber
,
E. P.
Gerber
,
D. S.
Abbot
, and
J.
Weare
, “
Exploring stratospheric rare events with transition path theory and short simulations
,” arXiv:2108.12727 (
2021
).
45.
R. M.
Donovan
,
J.-J.
Tapia
,
D. P.
Sullivan
,
J. R.
Faeder
,
R. F.
Murphy
,
M.
Dittrich
, and
D. M.
Zuckerman
, “
Unbiased rare event sampling in spatial stochastic systems biology models using a weighted ensemble of trajectories
,”
PLoS Comput. Biol.
12
,
e1004611
(
2016
).
46.
E.
Darve
and
E.
Ryu
, “
Computing reaction rates in bio-molecular systems using discrete macro-states
,” in
Innovations in Biomolecular Modeling and Simulations
(
Royal Society of Chemistry
,
2012
), pp.
138
206
.
47.
H.
Feng
,
R.
Costaouec
,
E.
Darve
, and
J. A.
Izaguirre
, “
A comparison of weighted ensemble and Markov state model methodologies
,”
J. Chem. Phys.
142
,
214113
(
2015
).
48.
J. L.
Adelman
and
M.
Grabe
, “
Simulating rare events using a weighted ensemble-based string method
,”
J. Chem. Phys.
138
,
044105
(
2013
).
49.
D.
Aristoff
, “
Analysis and optimization of weighted ensemble sampling
,”
ESAIM: Math. Modell. Numer. Anal.
52
,
1219
1238
(
2018
).
50.
D.
Aristoff
and
D. M.
Zuckerman
, “
Optimizing weighted ensemble sampling of steady states
,”
Multiscale Model. Simul.
18
,
646
673
(
2020
).
51.
M.
Baudel
,
A.
Guyader
, and
T.
Lelièvre
, “
On the Hill relation and the mean reaction time for metastable processes
,” arXiv:2008.09790 (
2020
).
52.
T.
Lelièvre
,
M.
Ramil
, and
J.
Reygner
, “
Estimation of statistics of transitions and hill relation for Langevin dynamics
,” arXiv:2206.13264 (
2022
).
53.
T. L.
Hill
,
Free Energy Transduction and Biochemical Cycle Kinetics
(
Courier Corporation
,
2005
).
54.
I.
Ben-Ari
and
R. G.
Pinsky
, “
Spectral analysis of a family of second-order elliptic operators with nonlocal boundary condition indexed by a probability measure
,”
J. Funct. Anal.
251
,
122
140
(
2007
).
55.
A. J.
DeGrave
,
A. T.
Bogetti
, and
L. T.
Chong
, “
The red scheme: Rate-constant estimation from pre-steady state weighted ensemble simulations
,”
J. Chem. Phys.
154
,
114111
(
2021
).
56.
U.
Adhikari
,
B.
Mostofian
,
J.
Copperman
,
S. R.
Subramanian
,
A. A.
Petersen
, and
D. M.
Zuckerman
, “
Computational estimation of microsecond to second atomistic folding times
,”
J. Am. Chem. Soc.
141
,
6519
6526
(
2019
).
57.
J.
Copperman
and
D. M.
Zuckerman
, “
Accelerated estimation of long-timescale kinetics from weighted ensemble simulation via non-Markovian “microbin” analysis
,”
J. Chem. Theory Comput.
16
,
6763
6775
(
2020
).
58.
J.
Lu
and
J.
Nolen
, “
Reactive trajectories and the transition path process
,”
Prob. Theory Relat. Fields
161
,
195
244
(
2015
).
59.
C. W.
Gardiner
 et al,
Handbook of Stochastic Methods
, 2nd ed. (
Springer
,
Berlin
,
1985
).
60.
P.
Ma
,
R.
Elber
, and
D. E.
Makarov
, “
The value of temporal information when analyzing reaction coordinates
,”
J. Chem. Theory Comput.
16
,
6077
6090
(
2020
).
61.
A. J.
DeGrave
,
J.-H.
Ha
,
S. N.
Loh
, and
L. T.
Chong
, “
Large enhancement of response times of a protein conformational switch by computational design
,”
Nat. Commun.
9
,
1013
1019
(
2018
).
62.
W.
Feller
,
An Introduction to Probability Theory and its Applications
(
John Wiley and Sons
,
2008
), Vol. 2.
63.
C. M.
Bender
and
S. A.
Orszag
,
Advanced Mathematical Methods for Scientists and Engineers I
(
Springer
,
New York, NY
,
1999
).
You do not currently have access to this content.