Generalized master equations provide a theoretically rigorous framework to capture the dynamics of processes ranging from energy harvesting in plants and photovoltaic devices to qubit decoherence in quantum technologies and even protein folding. At their center is the concept of memory. The explicit time-nonlocal description of memory is both protracted and elaborate. When physical intuition is at a premium, one would desire a more compact, yet complete, description. Here, we demonstrate how and when the time-convolutionless formalism constitutes such a description. In particular, by focusing on the dissipative dynamics of the spin-boson and Frenkel exciton models, we show how to: easily construct the time-local generator from reference reduced dynamics, elucidate the dependence of its existence on the system parameters and the choice of reduced observables, identify the physical origin of its apparent divergences, and offer analysis tools to diagnose their severity and circumvent their deleterious effects. We demonstrate that, when applicable, the time-local approach requires as little information as the more commonly used time-nonlocal scheme, with the important advantages of providing a more compact description, greater algorithmic simplicity, and physical interpretability. We conclude by introducing the discrete-time analog and a straightforward protocol to employ it in cases where the reference dynamics have limited resolution. The insights we present here offer the potential for extending the reach of dynamical methods, reducing both their cost and conceptual complexity.

1.
H.-P.
Breuer
and
F.
Petruccione
,
The Theory of Open Quantum Systems
(
Oxford University Press
,
Oxford
,
2007
).
2.
H.
Grabert
,
Projection Operator Techniques in Nonequilibrium Statistical Mechanics
(
Springer
,
Berlin
,
1982
).
3.
E.
Fick
and
S.
Gunter
,
The Quantum Statistics of Dynamic Processes
(
Springer-Verlag
,
Berlin
,
1990
).
4.
R.
Zwanzig
,
Nonequilibrium Statistical Mechanics
(
Oxford University Press
,
New York
,
2001
), p.
222
.
5.
B. G.
Mitterwallner
,
C.
Schreiber
,
J. O.
Daldrop
,
J. O.
Rädler
, and
R. R.
Netz
, “
Non-Markovian data-driven modeling of single-cell motility
,”
Phys. Rev. E
101
,
032408
(
2020
).
6.
S.
Cao
,
A.
Montoya-Castillo
,
W.
Wang
,
T. E.
Markland
, and
X.
Huang
, “
On the advantages of exploiting memory in Markov state models for biomolecular dynamics
,”
J. Chem. Phys.
153
,
014105
(
2020
).
7.
C.
Ayaz
,
L.
Tepper
,
F. N.
Brünig
,
J.
Kappler
,
J. O.
Daldrop
, and
R. R.
Netz
, “
Non-Markovian modeling of protein folding
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2023856118
(
2021
).
8.
L.
Zhu
,
H.
Jiang
,
S.
Cao
,
I. C.
Unarta
,
X.
Gao
, and
X.
Huang
, “
Critical role of backbone coordination in the mRNA recognition by RNA induced silencing complex
,”
Commun. Biol.
4
,
1345
(
2021
).
9.
I. C.
Unarta
,
S.
Cao
,
S.
Kubo
,
W.
Wang
,
P. P.
Cheung
,
X.
Gao
,
S.
Takada
, and
X.
Huang
, “
Role of bacterial RNA polymerase gate opening dynamics in DNA loading and antibiotics inhibition elucidated by quasi-Markov state model
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2024324118
(
2021
).
10.
S. A.
Demin
,
R. M.
Yulmetyev
,
O. Y.
Panischev
, and
P.
Hänggi
, “
Statistical quantifiers of memory for an analysis of human brain and neuro-system diseases
,”
Physica A
387
,
2100
2110
(
2008
).
11.
B. U.
Felderhof
,
J. M.
Deutch
, and
U. M.
Titulaer
, “
Correlation function formula for the intrinsic viscosity of dilute polymer solutions
,”
J. Chem. Phys.
63
,
000740
(
2008
).
12.
K. S.
Schweizer
, “
Microscopic theory of the dynamics of polymeric liquids: General formulation of a mode–mode-coupling approach
,”
J. Chem. Phys.
91
,
5802
(
1998
).
13.
V.
May
and
O.
Kühn
,
Charge and Energy Transfer Dynamics in Molecular Systems
(
Wiley-VHC
,
2011
).
14.
A.
Nitzan
,
Chemical Dynamics in Condensed Phases: Relaxation, Transfer, and Reactions in Condensed Molecular Systems
(
Oxford University Press
,
New York
,
2006
).
15.
E. Y.
Wilner
,
H.
Wang
,
G.
Cohen
,
M.
Thoss
, and
E.
Rabani
, “
Bistability in a nonequilibrium quantum system with electron-phonon interactions
,”
Phys. Rev. B
88
,
045137
(
2013
).
16.
L.
Kidon
,
E. Y.
Wilner
, and
E.
Rabani
, “
Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium Resonant level model
,”
J. Phys. Chem.
143
,
234110
(
2015
).
17.
G.
Granger
,
D.
Taubert
,
C. E.
Young
,
L.
Gaudreau
,
A.
Kam
,
S. A.
Studenikin
,
P.
Zawadzki
,
D.
Harbusch
,
D.
Schuh
,
W.
Wegscheider
,
Z. R.
Wasilewski
,
A. A.
Clerk
,
S.
Ludwig
, and
A. S.
Sachrajda
, “
Quantum interference and phonon-mediated back-action in lateral quantum-dot circuits
,”
Nat. Phys.
8
,
522
527
(
2012
).
18.
C.
Schinabeck
and
M.
Thoss
, “
Hierarchical quantum master equation approach to current fluctuations in nonequilibrium charge transport through nanosystems
,”
Phys. Rev. B
101
,
075422
(
2020
).
19.
A.
Shabani
and
D. A.
Lidar
, “
Completely positive post-Markovian master equation via a measurement approach
,”
Phys. Rev. A
71
,
020101(R)
(
2005
).
20.
B.
Vacchini
and
H. P.
Breuer
, “
Exact master equations for the non-Markovian decay of a qubit
,”
Phys. Rev. A
81
,
042103
(
2010
).
21.
E.
Barnes
,
Ł.
Cywiński
, and
S.
Das Sarma
, “
Nonperturbative master equation solution of central spin dephasing dynamics
,”
Phys. Rev. Lett.
109
,
140403
(
2012
).
22.
N.
Ng
and
E.
Rabani
, “
Long-time memory effects in a localizable central spin problem
,”
New J. Phys.
24
,
013025
(
2022
).
23.
W.
Götze
,
Complex Dynamics of Glass-Forming Liquids A Mode-Coupling Theory
(
Oxford University Press
,
2008
), p.
655
.
24.
D. R.
Reichman
and
E.
Rabani
, “
Self-consistent mode-coupling theory for self-diffusion in quantum liquids
,”
Phys. Rev. Lett.
87
,
265702
(
2001
).
25.
L. M. C.
Janssen
and
D. R.
Reichman
, “
Microscopic dynamics of supercooled liquids from first principles
,”
Phys. Rev. Lett.
115
,
205701
(
2015
).
26.
J.-P.
Boon
and
S.
Yip
,
Molecular Hydrodynamics
(
Dover Publications
,
1991
), p.
417
.
27.
J.-P.
Hansen
and
I. R.
McDonald
,
Theory of Simple Liquids
(
Elsevier Science
,
1990
), p.
556
.
28.
T.
Koide
,
E.
Nakano
, and
T.
Kodama
, “
Shear viscosity coefficient and relaxation time of causal dissipative hydrodynamics in QCD
,”
Phys. Rev. Lett.
103
,
052301
(
2009
).
29.
X. G.
Huang
,
T.
Kodama
,
T.
Koide
, and
D. H.
Rischke
, “
Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics
,”
Phys. Rev. C
83
,
024906
(
2011
).
30.
S. A.
Hartnoll
and
D. M.
Hofman
, “
Locally critical resistivities from umklapp scattering
,”
Phys. Rev. Lett.
108
,
241601
(
2012
).
31.
A.
Lucas
,
R. A.
Davison
, and
S.
Sachdev
, “
Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
9463
9468
(
2016
).
32.
M.
Han
,
M.
Fruchart
,
C.
Scheibner
,
S.
Vaikuntanathan
,
J. J.
de Pablo
, and
V.
Vitelli
, “
Fluctuating hydrodynamics of chiral active fluids
,”
Nat. Phys.
17
,
1260
1269
(
2021
).
33.
M.
Te Vrugt
,
S.
Hossenfelder
, and
R.
Wittkowski
, “
Mori-Zwanzig formalism for general relativity: A new approach to the averaging problem
,”
Phys. Rev. Lett.
127
,
231101
(
2021
).
34.
S.
Picozzi
and
B. J.
West
, “
Fractional Langevin model of memory in financial markets
,”
Phys. Rev. E
66
,
046118
(
2002
).
35.
X.
Meng
,
J.-W.
Zhang
, and
H.
Guo
, “
Quantum Brownian motion model for the stock market
,”
Physica A
452
,
281
288
(
2016
).
36.
S.
Nakajima
, “
On quantum theory of transport phenomena
,”
Prog. Theor. Phys.
20
,
948
(
1958
).
37.
H.
Mori
, “
Statistical-mechanical theory of transport in fluids
,”
Phys. Rev.
112
,
1829
(
1958
).
38.
R.
Zwanzig
, “
Ensemble method in the theory of irreversibility
,”
J. Chem. Phys.
33
,
1338
(
1960
).
39.
M.
Tokuyama
and
H.
Mori
, “
Statistical-mechanical theory of the Boltzmann equation and fluctuations in mu space
,”
Prog. Theor. Phys.
56
,
1073
(
1976
).
40.
S.
Chaturvedi
and
F.
Shibata
, “
Time-convolutionless projection operator formalism for elimination of fast variables. Applications to Brownian motion
,”
Z. Phys. B
35
,
297
(
1979
).
41.
Q.
Shi
and
E.
Geva
, “
A new approach to calculating the memory kernel of the generalized quantum master equation for an arbitrary system–bath coupling
,”
J. Chem. Phys.
119
,
12063
(
2003
).
42.
M.-L.
Zhang
,
B. J.
Ka
, and
E.
Geva
, “
Nonequilibrium quantum dynamics in the condensed phase via the generalized quantum master equation
.”
J. Chem. Phys.
125
,
044106
(
2006
).
43.
G.
Cohen
,
E. Y.
Wilner
, and
E.
Rabani
, “
Generalized projected dynamics for non-system observables of non-equilibrium quantum impurity models
,”
New J. Phys.
15
,
073018
(
2013
).
44.
A.
Ivanov
and
H.-P.
Breuer
, “
Extension of the Nakajima-Zwanzig approach to multitime correlation functions of open systems
,”
Phys. Rev. A
92
,
032113
(
2015
).
45.
A.
Kelly
,
A.
Montoya-Castillo
,
L.
Wang
, and
T. E.
Markland
, “
Generalized quantum master equations in and out of equilibrium: When can one win?
,”
J. Chem. Phys.
144
,
184105
(
2016
).
46.
A.
Montoya-Castillo
and
D. R.
Reichman
, “
Approximate but accurate quantum dynamics from the Mori formalism: I. Nonequilibrium dynamics
,”
J. Chem. Phys.
144
,
184104
(
2016
).
47.
A.
Montoya-Castillo
and
D. R.
Reichman
, “
Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions
,”
J. Chem. Phys.
146
,
084110
(
2017
).
48.
E.
Mulvihill
and
E.
Geva
, “
A Road map to various pathways for calculating the memory kernel of the generalized quantum master equation
,”
J. Phys. Chem. B
125
,
9834
(
2021
).
49.
E.
Mulvihill
and
E.
Geva
, “
Simulating the dynamics of electronic observables via reduced-dimensionality generalized quantum master equations
,”
J. Chem. Phys.
156
,
044119
(
2022
).
50.
N.
Ng
,
D. T.
Limmer
, and
E.
Rabani
, “
Nonuniqueness of generalized quantum master equations for a single observable
,”
J. Chem. Phys.
155
,
156101
(
2021
).
51.
G.
Nan
,
Q.
Shi
, and
Z.
Shuai
, “
Nonperturbative time-convolutionless quantum master equation from the path integral approach
,”
J. Chem. Phys.
130
,
134106
(
2009
).
52.
L.
Kidon
,
H.
Wang
,
M.
Thoss
, and
E.
Rabani
, “
On the memory kernel and the reduced system propagator
,”
J. Chem. Phys.
149
,
104105
(
2018
).
53.
Y.-y.
Liu
,
Y.-m.
Yan
,
M.
Xu
,
K.
Song
, and
Q.
Shi
, “
Exact generator and its high order expansions in time-convolutionless generalized master equation: Applications to spin-boson model and excitation energy transfer
,”
Chin. J. Chem. Phys.
31
,
575
583
(
2018
).
54.
C. M.
Kropf
,
C.
Gneiting
, and
A.
Buchleitner
, “
Effective dynamics of disordered quantum systems
,”
Phys. Rev. X
6
,
031023
(
2016
).
55.
D.
Maldonado-Mundo
,
P.
Ohberg
,
B. W.
Lovett
, and
E.
Andersson
, “
Investigating the generality of time-local master equations
,”
Phys. Rev. A
86
,
042107(6)
(
2012
).
56.
Y.
Tanimura
and
R.
Kubo
, “
Time evolution of a quantum system in contact with a nearly Gaussian-Markoffian noise bath
,”
J. Phys. Soc. Jpn.
58
,
101
(
1989
).
57.
D.
Suess
,
A.
Eisfeld
, and
W. T.
Strunz
, “
Hierarchy of stochastic pure states for open quantum system dynamics
,”
Phys. Rev. Lett.
113
,
150403
(
2014
).
58.
L.
Varvelo
,
J. K.
Lynd
, and
D. I. G.
Bennett
, “
Formally exact simulations of mesoscale exciton dynamics in molecular materials
,”
Chem. Sci.
12
,
9704
9711
(
2021
).
59.
N.
Makri
and
D. E.
Makarov
, “
Tensor propagator for iterative quantum time evolution of reduced density matrices. I. Theory
,”
J. Chem. Phys.
102
,
4600
(
1995
).
60.
N.
Makri
, “
Small matrix path integral with extended memory
,”
J. Chem. Theory Comput.
17
,
1
(
2020
).
61.
J.
Prior
,
A. W.
Chin
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Efficient simulation of strong system-environment interactions
,”
Phys. Rev. Lett.
105
,
050404
(
2010
).
62.
D.
Tamascelli
,
A.
Smirne
,
J.
Lim
,
S. F.
Huelga
, and
M. B.
Plenio
, “
Efficient simulation of finite-temperature open quantum systems
,”
Phys. Rev. Lett.
123
,
090402
(
2019
).
63.
A.
Strathearn
,
P.
Kirton
,
D.
Kilda
,
J.
Keeling
, and
B. W.
Lovett
, “
Efficient non-Markovian quantum dynamics using time-evolving matrix product operators
,”
Nat. Commun.
9
,
3322
(
2018
).
64.
M.
Cygorek
,
M.
Cosacchi
,
A.
Vagov
,
V. M.
Axt
,
B. W.
Lovett
,
J.
Keeling
, and
E. M.
Gauger
, “
Simulation of open quantum systems by automated compression of arbitrary environments
,”
Nat. Phys.
18
,
662
668
(
2022
).
65.
P.
Werner
,
A.
Comanac
,
L.
De’ Medici
,
M.
Troyer
, and
A. J.
Millis
, “
Continuous-time solver for quantum impurity models
,”
Phys. Rev. Lett.
97
,
076405
(
2006
).
66.
E.
Gull
,
A. J.
Millis
,
A. I.
Lichtenstein
,
A. N.
Rubtsov
,
M.
Troyer
, and
P.
Werner
, “
Continuous-time Monte Carlo methods for quantum impurity models
,”
Rev. Mod. Phys.
83
,
349
404
(
2011
).
67.
G.
Cohen
,
E.
Gull
,
D. R.
Reichman
, and
A. J.
Millis
, “
Taming the dynamical sign problem in real-time evolution of quantum many-body problems
,”
Phys. Rev. Lett.
115
,
266802
(
2015
).
68.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
, “
The multi-configurational time-dependent Hartree approach
,”
Chem. Phys. Lett.
165
,
73
78
(
1990
).
69.
H.
Wang
and
M.
Thoss
, “
Multilayer formulation of the multiconfiguration time-dependent Hartree theory
,”
J. Chem. Phys.
119
,
1289
(
2003
).
70.
S. R.
White
and
A. E.
Feiguin
, “
Real-time evolution using the density matrix renormalization group
,”
Phys. Rev. Lett.
93
,
076401
(
2004
).
71.
G.
Vidal
, “
Efficient simulation of one-dimensional quantum many-body systems
,”
Phys. Rev. Lett.
93
,
040502
(
2004
).
72.
A. J.
Daley
,
C.
Kollath
,
U.
Schollwöck
, and
G.
Vidal
, “
Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces
,”
J. Stat. Phys.
2004
,
P04005
.
73.
G.
Cohen
and
E.
Rabani
, “
Memory effects in nonequilibrium quantum impurity models
,”
Phys. Rev. B
84
,
075150
(
2011
).
74.
G.
Cohen
,
E.
Gull
,
D. R.
Reichman
,
A. J.
Millis
, and
E.
Rabani
, “
Numerically exact long-time magnetization dynamics at the nonequilibrium Kondo crossover of the Anderson impurity model
,”
Phys. Rev. B
87
,
195108
(
2013
).
75.
E. Y.
Wilner
,
H.
Wang
,
M.
Thoss
, and
E.
Rabani
, “
Nonequilibrium quantum systems with electron-phonon interactions: Transient dynamics and approach to steady state
,”
Phys. Rev. B
89
,
205129
(
2014
).
76.
W. C.
Pfalzgraff
,
A.
Kelly
, and
T. E.
Markland
, “
Nonadiabatic dynamics in atomistic environments: Harnessing quantum-classical theory with generalized quantum master equations
,”
J. Phys. Chem. Lett.
6
,
4743
(
2015
).
77.
W. C.
Pfalzgraff
,
A.
Montoya-Castillo
,
A.
Kelly
, and
T. E.
Markland
, “
Efficient construction of generalized master equation memory kernels for multi-state systems from nonadiabatic quantum-classical dynamics
,”
J. Chem. Phys.
150
,
244109
(
2019
).
78.
J.
Cerrillo
and
J.
Cao
, “
Non-Markovian dynamical maps: Numerical processing of open quantum trajectories
,”
Phys. Rev. Lett.
112
,
110401
(
2014
).
79.
F. A.
Pollock
,
C.
Rodríguez-Rosario
,
T.
Frauenheim
,
M.
Paternostro
, and
K.
Modi
, “
Operational Markov condition for quantum processes
,”
Phys. Rev. Lett.
120
,
040405
(
2018
).
80.
M. R.
Jørgensen
and
F. A.
Pollock
, “
Discrete memory kernel for multitime correlations in non-Markovian quantum processes
,”
Phys. Rev. A
102
,
052206
(
2020
).
81.
R.
Rosenbach
,
J.
Cerrillo
,
S. F.
Huelga
,
J.
Cao
, and
M. B.
Plenio
, “
Efficient simulation of non-Markovian system-environment interaction
,”
New J. Phys.
18
,
23035
(
2016
).
82.
A. A.
Kananenka
,
C.-Y.
Hsieh
,
J.
Cao
, and
E.
Geva
, “
Accurate long-time mixed quantum-classical Liouville dynamics via the transfer tensor method
,”
J. Phys. Chem. Lett.
7
,
4809
4814
(
2016
).
83.
F. A.
Pollock
,
C.
Rodríguez-Rosario
,
T.
Frauenheim
,
M.
Paternostro
, and
K.
Modi
, “
Non-Markovian quantum processes: Complete framework and efficient characterization
,”
Phys. Rev. A
97
,
012127
(
2018
).
84.
A.
Carof
,
R.
Vuilleumier
, and
B.
Rotenberg
, “
Two algorithms to compute projected correlation functions in molecular dynamics simulations
.”
J. Chem. Phys.
140
,
124103
(
2014
).
85.
D.
Lesnicki
,
R.
Vuilleumier
,
A.
Carof
, and
B.
Rotenberg
, “
Molecular hydrodynamics from memory kernels
,”
Phys. Rev. Lett.
116
,
147804
(
2016
).
86.
K.
Nestmann
,
V.
Bruch
, and
M. R.
Wegewijs
, “
How quantum evolution with memory is generated in a time-local way
,”
Phys. Rev. X
11
,
21041
(
2021
).
87.
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
, “
Dynamics of the dissipative two-state system
,”
Rev. Mod. Phys.
59
,
1
(
1987
).
88.
U.
Weiss
,
Quantum Dissipative Systems
(
World Scientific
,
1992
).
89.
J.
Adolphs
and
T.
Renger
, “
How proteins trigger excitation energy transfer in the FMO complex of green Sulfur bacteria
,”
Biophys. J.
91
,
2778
(
2006
).
90.
A.
Ishizaki
and
G. R.
Fleming
, “
Theoretical examination of quantum coherence in a photosynthetic system at physiological temperature
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
17255
17260
(
2009
).
91.
R.
Kubo
,
M.
Toda
, and
N.
Hashitsume
,
Statistical Physics II. Nonequilibrium Statistical Mechanics
(
Springer-Verlag
,
Berlin
,
1991
).
92.
T.
Yamamoto
, “
Quantum statistical mechanical theory of the rate of exchange chemical reactions in the gas phase
,”
J. Chem. Phys.
33
,
281
(
1960
).
93.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
, “
Quantum mechanical rate constants for bimolecular reactions
,”
J. Chem. Phys.
79
,
4889
(
1983
).
94.
S.
Mukamel
,
Principles of Nonlinear Optical Spectroscopy
(
Oxford University Press
,
New York
,
1995
).
95.
P. N.
Argyres
and
P. L.
Kelley
, “
Theory of spin resonance and relaxation
,”
Phys. Rev.
134
,
A98
(
1964
).
96.
M.
Sparpaglione
and
S.
Mukamel
, “
Adiabatic vs. Nonadiabatic electron transfer and longitudinal solvent dielectric relaxation: Beyond the debye model
,”
J. Phys. Chem.
91
,
3938
3943
(
1987
).
97.
F.
Bloch
, “
Generalized theory of relaxation
,”
Phys. Rev.
105
,
1206
(
1957
).
98.
A. G.
Redfield
, “
The theory of relaxation processes
,”
Adv. Magn. Opt. Reson.
1
,
1
(
1965
).
99.
H.
Dekker
, “
Noninteracting-blip approximation for a two-level system coupled to a heat bath
,”
Phys. Rev. A
35
,
1436
1437
(
1987
).
100.
W. M.
Zhang
,
T.
Meier
,
V.
Chernyak
, and
S.
Mukamel
, “
Exciton-migration and three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes
,”
J. Chem. Phys.
108
,
7763
(
1998
).
101.
A. A.
Golosov
and
D. R.
Reichman
, “
Reference system master equation approaches to condensed phase charge transfer processes. I. General formulation
,”
J. Chem. Phys.
115
,
9848
(
2001
).
102.
Y. C.
Cheng
and
R. J.
Silbey
, “
Markovian approximation in the relaxation of open quantum systems
,”
J. Phys. Chem. B
109
,
21399
(
2005
).
103.
S.
Jang
,
Y.-C.
Cheng
,
D. R.
Reichman
, and
J. D.
Eaves
, “
Theory of coherent resonance energy transfer
,”
J. Chem. Phys.
129
,
101104
(
2008
).
104.
A.
Kolli
,
A.
Nazir
, and
A.
Olaya-Castro
, “
Electronic excitation dynamics in multichromophoric systems described via a polaron-representation master equation
,”
J. Chem. Phys.
135
,
154112
(
2011
); arXiv:1106.2784.
105.
G. D.
Harp
and
B. J.
Berne
, “
Time-correlation functions, memory functions, and molecular dynamics
,”
Phys. Rev. A
2
,
975
996
(
1970
).
106.
X.
Chen
and
R. J.
Silbey
, “
Effect of correlation of local fluctuations on exciton coherence
,”
J. Chem. Phys.
132
,
204503
(
2010
).
107.
A.
Ishizaki
and
G. R.
Fleming
, “
Unified treatment of quantum coherent and incoherent hopping dynamics in electronic energy transfer: Reduced hierarchy equation approach
.”
J. Chem. Phys.
130
,
234111
(
2009
).
108.
E.
Zaccarelli
,
G.
Foffi
,
F.
Sciortino
,
P.
Tartaglia
, and
K. A.
Dawson
, “
Gaussian density fluctuations and mode coupling theory for supercooled liquids
,”
Europhys. Lett.
55
,
157
163
(
2001
).
109.
E.
Mulvihill
,
K. M.
Lenn
,
X.
Gao
,
A.
Schubert
,
B. D.
Dunietz
, and
E.
Geva
, “
Simulating energy transfer dynamics in the Fenna-Matthews-Olson complex via the modified generalized quantum master equation
,”
J. Chem. Phys.
154
,
204109
(
2021
).
110.
T.
Berkelbach
,
J.
Fetherolf
,
P.
Shih
, and
I. S.
Dunn
, berkelbach-group/pyrho v1.0 (
2020
).
111.

One must make a distinction between traceless versus properly normalized initial conditions. While physically allowed density matrices in quantum mechanics are normalized, one can construct dynamical quantities that appear to arise from traceless initial density matrices. For example, in the Argyres-Kelley projector, which recovers the entire density matrix subject to all uncorrelated initial condition, traceless initial densities correspond to cases where the spin starts in a coherence, |j⟩⟨k|, while the bath is originally in thermal equilibrium, ρB=eβHB/TrB[eβHB]. Physically, such a situation arises from, say, the measurement of a transition dipole operator after an impulsive initial condition. In contrast, normalized initial densities in the Argyres-Kelley projector arise from the population-based initial conditions where the spin starts from a normalized superposition of states.

112.

By “weak coupling” we mean that the reorganization energy, λ, is smaller than any other parameter in the Hamiltonian. However, for the low-order perturbation theory, namely TCL2 Redfield, to agree with the HEOM, the requirement is that the unitless parameter max[2λ/βωc2, 2λ/πωc] < 1, as is shown in Ref. 125 and analyzed in greater depth in Ref. 126.

113.

We note that in our analysis surrounding Figs. 4(a) and 4(b) are the same.

114.
M.
Cho
,
H. M.
Vaswani
,
T.
Brixner
,
J.
Stenger
, and
G. R.
Fleming
, “
Exciton analysis in 2D electronic spectroscopy
,”
J. Phys. Chem. B
109
,
10542
10556
(
2005
).
115.
L.
Mühlbacher
and
E.
Rabani
, “
Real-time path integral approach to nonequilibrium many-body quantum systems
,”
Phys. Rev. Lett.
100
,
176403
(
2008
).
116.
S.
Chatterjee
and
N.
Makri
, “
Real-time path integral methods, quantum master equations, and classical vs quantum memory
,”
J. Phys. Chem. B
123
,
10470
(
2019
).
117.
H.-t.
Chen
,
G.
Cohen
, and
D. R.
Reichman
, “
Inchworm Monte Carlo for exact non-adiabatic dynamics I. Theory and algorithms
,”
J. Chem. Phys.
146
,
054105
(
2016
).
118.
A. J.
Dominic
,
T.
Sayer
,
S.
Cao
,
T. E.
Markland
,
X.
Huang
, and
A.
Montoya-castillo
, “
Building insightful, memory-enriched models to capture long-time biochemical processes from short-time simulations
,”
bioRxiv:2022.10.17.512620
(
2022
), 1–10.
119.
Q.
Shi
and
E.
Geva
, “
A semiclassical generalized quantum master equation for an arbitrary system-bath coupling
,”
J. Chem. Phys.
120
,
10647
(
2004
).
120.
A.
Kelly
and
T. E.
Markland
, “
Efficient and accurate surface hopping for long time nonadiabatic quantum dynamics
.”
J. Chem. Phys.
139
,
014104
(
2013
).
121.
A.
Kelly
,
N.
Brackbill
, and
T. E.
Markland
, “
Accurate nonadiabatic quantum dynamics on the cheap: Making the most of mean field theory with master equations
,”
J. Chem. Phys.
142
,
094110
(
2015
).
122.
E.
Mulvihill
,
A.
Schubert
,
X.
Sun
,
B. D.
Dunietz
, and
E.
Geva
, “
A modified approach for simulating electronically nonadiabatic dynamics via the generalized quantum master equation
,”
J. Chem. Phys.
150
,
034101
(
2019
).
123.
E.
Mulvihill
,
X.
Gao
,
Y.
Liu
,
A.
Schubert
,
B. D.
Dunietz
, and
E.
Geva
, “
Combining the mapping Hamiltonian linearized semiclassical approach with the generalized quantum master equation to simulate electronically nonadiabatic molecular dynamics
,”
J. Chem. Phys.
151
,
074103
(
2019
).
124.
G.
Amati
,
A.
Maximilian
,
C.
Saller
,
A.
Kelly
, and
J. O.
Richardson
, “
Quasiclassical approaches to the generalized quantum master equation
,”
J. Chem. Phys.
157
,
234103
(
2022
).
125.
A.
Montoya-Castillo
,
T. C.
Berkelbach
, and
D. R.
Reichman
, “
Extending the applicability of Redfield theories into highly non-Markovian regimes
,”
J. Chem. Phys.
143
,
194108
(
2015
).
126.
B. B.
Laird
,
J.
Budimir
, and
J. L.
Skinner
, “
Quantum-mechanical derivation of the Bloch equations: Beyond the weak-coupling limit
,”
J. Chem. Phys.
94
,
4391
(
1991
).
You do not currently have access to this content.