We have performed molecular dynamics simulations to study the adsorption of ten hydrate anti-agglomerants onto a mixed methane–propane sII hydrate surface covered by layers of liquid water of various thickness. As a general trend, we found that the more liquid water that is present on the hydrate surface, the less favorable the adsorption becomes even though there are considerable differences between the individual molecules, indicating that the presence and thickness of this liquid water layer are crucial parameters for anti-agglomerant adsorption studies. Additionally, we found that there exists an optimal thickness of the liquid water layer favoring hydrate growth due to the presence of both liquid water and hydrate-forming guest molecules. For all other cases of liquid water layer thickness, hydrate growth is slower due to the limited availability of hydrate-forming guests close to the hydrate formation front. Finally, we investigated the connection between the thickness of the liquid water layer and the degree of subcooling and found a very good agreement between our molecular dynamics simulations and theoretical predictions.

1.
E. D. J.
Sloan
and
C. A.
Koh
,
Clathrate Hydrates of Natural Gases
, 3rd ed. (
Taylor & Francis Group
,
2008
).
2.
E. G.
Hammerschmidt
, “
Formation of gas hydrates in natural gas transmission lines
,”
Ind. Eng. Chem.
26
,
851
855
(
1934
).
3.
M. A.
Kelland
, “
History of the development of low dosage hydrate inhibitors
,”
Energy Fuels
20
,
825
847
(
2006
).
4.
M. A.
Kelland
, “
A review of kinetic hydrate inhibitors from an environmental perspective
,”
Energy Fuels
32
,
12001
12012
(
2018
).
5.
H. P.
Veluswamy
,
S.
Kumar
,
R.
Kumar
,
P.
Rangsunvigit
, and
P.
Linga
, “
Enhanced clathrate hydrate formation kinetics at near ambient temperatures and moderate pressures: Application to natural gas storage
,”
Fuel
182
,
907
919
(
2016
).
6.
H. P.
Veluswamy
,
A.
Kumar
,
Y.
Seo
,
J. D.
Lee
, and
P.
Linga
, “
A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates
,”
Appl. Energy
216
,
262
285
(
2018
).
7.
H. P.
Veluswamy
,
R.
Kumar
, and
P.
Linga
, “
Hydrogen storage in clathrate hydrates: Current state of the art and future directions
,”
Appl. Energy
122
,
112
132
(
2014
).
8.
A.
Gupta
,
G. V.
Baron
,
P.
Perreault
,
S.
Lenaerts
,
R.-G.
Ciocarlan
,
P.
Cool
,
P. G. M.
Mileo
,
S.
Rogge
,
V.
Van Speybroeck
,
G.
Watson
,
P.
Van Der Voort
,
M.
Houlleberghs
,
E.
Breynaert
,
J.
Martens
, and
J. F. M.
Denayer
, “
Hydrogen clathrates: Next generation hydrogen storage materials
,”
Energy Storage Mater.
41
,
69
107
(
2021
).
9.
P.
Kastanidis
,
I. N.
Tsimpanogiannis
,
G. E.
Romanos
,
A. K.
Stubos
, and
I. G.
Economou
, “
Recent advances in experimental measurements of mixed-gas three-phase hydrate equilibria for gas mixture separation and energy-related applications
,”
J. Chem. Eng. Data
64
,
4991
5016
(
2019
).
10.
E. D.
Sloan
, “
Fundamental principles and applications of natural gas hydrates
,”
Nature
426
,
353
359
(
2003
).
11.
P.
Englezos
and
J. D.
Lee
, “
Gas hydrates: A cleaner source of energy and opportunity for innovative technologies
,”
Korean J. Chem. Eng.
22
,
671
681
(
2005
).
12.
A. K.
Sum
,
C. A.
Koh
, and
E. D.
Sloan
, “
Clathrate hydrates: From laboratory science to engineering practice
,”
Ind. Eng. Chem. Res.
48
,
7457
7465
(
2009
).
13.
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
, “
Fundamentals and applications of gas hydrates
,”
Annu. Rev. Chem. Biomol. Eng.
2
,
237
257
(
2011
).
14.
G. J.
Moridis
,
T. S.
Collett
,
M.
Pooladi-Darvish
,
S.
Hancock
,
C.
Santamarina
,
R.
Boswell
,
T.
Kneafsey
,
J.
Rutqvist
,
M. B.
Kowalsky
,
M. T.
Reagan
,
E. D.
Sloan
,
A. K.
Sum
, and
C. A.
Koh
, “
Challenges, uncertainties , and issues facing gas production from gas-hydrate deposits
,”
SPE Reservoir Eval. Eng.
14
,
76
112
(
2011
).
15.
T.
Collett
,
J.-J.
Bahk
,
R.
Baker
,
R.
Boswell
,
D.
Divins
,
M.
Frye
,
D.
Goldberg
,
J.
Husebø
,
C.
Koh
,
M.
Malone
,
M.
Morell
,
G.
Myers
,
C.
Shipp
, and
M.
Torres
, “
Methane hydrates in nature—Current knowledge and challenges
,”
J. Chem. Eng. Data
60
,
319
329
(
2015
).
16.
N. J.
English
and
J. M. D.
MacElroy
, “
Perspectives on molecular simulation of clathrate hydrates: Progress, prospects and challenges
,”
Chem. Eng. Sci.
121
,
133
156
(
2015
), part of Special Issue: 2013 Danckwerts Special Issue on Molecular Modelling in Chemical Engineering.
17.
C. D.
Ruppel
and
J. D.
Kessler
, “
The interaction of climate change and methane hydrates
,”
Rev. Geophys.
55
,
126
168
, (
2017
).
18.
I. N.
Tsimpanogiannis
and
I. G.
Economou
, “
Monte Carlo simulation studies of clathrate hydrates: A review
,”
J. Supercrit. Fluids
134
,
51
60
(
2018
).
19.
K.
You
,
P. B.
Flemings
,
A.
Malinverno
,
T. S.
Collett
, and
K.
Darnell
, “
Mechanisms of methane hydrate formation in geological systems
,”
Rev. Geophys.
57
,
1146
1196
, (
2019
).
20.
A.
Hassanpouryouzband
,
E.
Joonaki
,
M.
Vasheghani Farahani
,
S.
Takeya
,
C.
Ruppel
,
J.
Yang
,
N. J.
English
,
J. M.
Schicks
,
K.
Edlmann
,
H.
Mehrabian
,
Z. M.
Aman
, and
B.
Tohidi
, “
Gas hydrates in sustainable chemistry
,”
Chem. Soc. Rev.
49
,
5225
5309
(
2020
).
21.
I. N.
Tsimpanogiannis
,
J.
Costandy
,
P.
Kastanidis
,
S.
El Meragawi
,
V. K.
Michalis
,
N. I.
Papadimitriou
,
S. N.
Karozis
,
N. I.
Diamantonis
,
O. A.
Moultos
,
G. E.
Romanos
,
A. K.
Stubos
, and
I. G.
Economou
, “
Using clathrate hydrates for gas storage and gas-mixture separations: Experimental and computational studies at multiple length scales
,”
Mol. Phys.
116
,
2041
2060
(
2018
).
22.
B. C.
Barnes
and
A. K.
Sum
, “
Advances in molecular simulations of clathrate hydrates
,”
Curr. Opin. Chem. Eng.
2
,
184
190
(
2013
), part of Special Issue: Nanotechnology/Separation Engineering.
23.
N.
Maeda
, “
Is the surface of gas hydrates dry?
,”
Energies
8
,
5361
5369
(
2015
).
24.
Z. M.
Aman
,
E. P.
Brown
,
E. D.
Sloan
,
A. K.
Sum
, and
C. A.
Koh
, “
Interfacial mechanisms governing cyclopentane clathrate hydrate adhesion/cohesion
,”
Phys. Chem. Chem. Phys.
13
,
19796
19806
(
2011
).
25.
Z. M.
Aman
,
K.
Olcott
,
K.
Pfeiffer
,
E. D.
Sloan
,
A. K.
Sum
, and
C. A.
Koh
, “
Surfactant adsorption and interfacial tension investigations on cyclopentane hydrate
,”
Langmuir
29
,
2676
2682
(
2013
).
26.
B.
Slater
and
A.
Michaelides
, “
Surface premelting of water ice
,”
Nat. Rev. Chem.
3
,
172
188
(
2019
).
27.
A.
Falenty
and
W. F.
Kuhs
, “‘
Self-preservation’ of CO2 gas hydrates-surface microstructure and ice perfection
,”
J. Phys. Chem. B
113
,
15975
15988
(
2009
).
28.
A.
Falenty
,
W. F.
Kuhs
,
M.
Glockzin
, and
G.
Rehder
, “‘
Self-preservation’ of CH4 hydrates for gas transport technology: Pressure-temperature dependence and ice microstructures
,”
Energy Fuels
28
,
6275
6283
(
2014
).
29.
P.
Naeiji
,
T. K.
Woo
,
S.
Alavi
, and
J. A.
Ripmeester
, “
Molecular dynamic simulations of clathrate hydrate anomalous preservation: The effect of coating clathrate hydrate phases
,”
J. Phys. Chem. C
123
,
28715
28725
(
2019
).
30.
N. N.
Nguyen
,
R.
Berger
, and
H.-J.
Butt
, “
Premelting-induced agglomeration of hydrates: Theoretical analysis and modeling
,”
ACS Appl. Mater. Interfaces
12
,
14599
14606
(
2020
).
31.
N. N.
Nguyen
,
C. V.
Nguyen
,
T. A. H.
Nguyen
, and
A. V.
Nguyen
, “
Surface science in the research and development of hydrate-based sustainable technologies
,”
ACS Sustainable Chem. Eng.
10
,
4041
(
2022
).
32.
T.
Yagasaki
,
M.
Matsumoto
, and
H.
Tanaka
, “
Adsorption mechanism of inhibitor and guest molecules on the surface of gas hydrates
,”
J. Am. Chem. Soc.
137
,
12079
12085
(
2015
).
33.
A.
Phan
,
T.
Bui
,
E.
Acosta
,
P.
Krishnamurthy
, and
A.
Striolo
, “
Molecular mechanisms responsible for hydrate anti-agglomerant performance
,”
Phys. Chem. Chem. Phys.
18
,
24859
24871
(
2016
).
34.
A.
Phan
,
H. M.
Stoner
,
M.
Stamatakis
,
C. A.
Koh
, and
A.
Striolo
, “
Surface morphology effects on clathrate hydrate wettability
,”
J. Colloid Interface Sci.
611
,
421
431
(
2022
).
35.
T.
Bui
,
A.
Phan
,
D.
Monteiro
,
Q.
Lan
,
M.
Ceglio
,
E.
Acosta
,
P.
Krishnamurthy
, and
A.
Striolo
, “
Evidence of structure-performance relation for surfactants used as antiagglomerants for hydrate management
,”
Langmuir
33
,
2263
2274
(
2017
).
36.
T.
Bui
,
D.
Monteiro
,
L.
Vo
, and
A.
Striolo
, “
Synergistic and antagonistic effects of aromatics on the agglomeration of gas hydrates
,”
Sci. Rep.
10
,
5496
(
2020
).
37.
F.
Sicard
,
T.
Bui
,
D.
Monteiro
,
Q.
Lan
,
M.
Ceglio
,
C.
Burress
, and
A.
Striolo
, “
Emergent properties of antiagglomerant films control methane transport: Implications for hydrate management
,”
Langmuir
34
,
9701
9710
(
2018
).
38.
F.
Sicard
and
A.
Striolo
, “
Role of structural rigidity and collective behaviour in the molecular design of gas hydrate anti-agglomerants
,”
Mol. Syst. Des. Eng.
6
,
713
721
(
2021
); arXiv:2012.09765.
39.
A.
Phan
,
M.
Stamatakis
,
C. A.
Koh
, and
A.
Striolo
, “
Correlating antiagglomerant performance with gas hydrate cohesion
,”
ACS Appl. Mater. Interfaces
13
,
40002
40012
(
2021
).
40.
T.
Bui
,
F.
Sicard
,
D.
Monteiro
,
Q.
Lan
,
M.
Ceglio
,
C.
Burress
, and
A.
Striolo
, “
Antiagglomerants affect gas hydrate growth
,”
J. Phys. Chem. Lett.
9
,
3491
3496
(
2018
).
41.
S.
Mohr
,
F.
Hoevelmann
,
J.
Wylde
,
N.
Schelero
,
J.
Sarria
,
N.
Purkayastha
,
Z.
Ward
,
P.
Navarro Acero
, and
V. K.
Michalis
, “
Ranking the efficiency of gas hydrate anti-agglomerants through molecular dynamic simulations
,”
J. Phys. Chem. B
125
,
1487
1502
(
2021
).
42.
P. M.
Naullage
,
A. A.
Bertolazzo
, and
V.
Molinero
, “
How do surfactants control the agglomeration of clathrate hydrates?
,”
ACS Cent. Sci.
5
,
428
439
(
2019
).
43.
M. A.
Bellucci
,
M. R.
Walsh
, and
B. L.
Trout
, “
Molecular dynamics analysis of anti-agglomerant surface adsorption in natural gas hydrates
,”
J. Phys. Chem. C
122
,
2673
2683
(
2018
).
44.
A.
Striolo
,
A.
Phan
, and
M. R.
Walsh
, “
Molecular properties of interfaces relevant for clathrate hydrate agglomeration
,”
Curr. Opin. Chem. Eng.
25
,
57
66
(
2019
).
45.
F.
Jiménez-Ángeles
and
A.
Firoozabadi
, “
Induced charge density and thin liquid film at hydrate/methane gas interfaces
,”
J. Phys. Chem. C
118
,
26041
26048
(
2014
).
46.
S.
Mohr
,
R.
Pétuya
,
J.
Wylde
,
J.
Sarria
,
N.
Purkayastha
,
Z.
Ward
,
S.
Bodnar
, and
I. N.
Tsimpanogiannis
, “
Size dependence of the dissociation process of spherical hydrate particles via microsecond molecular dynamics simulations
,”
Phys. Chem. Chem. Phys.
23
,
11180
11185
(
2021
).
47.
H.
Mehrabian
,
M. A.
Bellucci
,
M. R.
Walsh
, and
B. L.
Trout
, “
Effect of salt on antiagglomerant surface adsorption in natural gas hydrates
,”
J. Phys. Chem. C
122
,
12839
12849
(
2018
).
48.
H.
Mehrabian
,
M. R.
Walsh
, and
B. L.
Trout
, “
In silico analysis of the effect of alkyl tail length on antiagglomerant adsorption to natural gas hydrates in brine
,”
J. Phys. Chem. C
123
,
17239
17248
(
2019
).
49.
H.
Mehrabian
and
B. L.
Trout
, “
In silico engineering of hydrate anti-agglomerant molecules using bias-exchange metadynamics simulations
,”
J. Phys. Chem. C
124
,
18983
18992
(
2020
).
50.
C.
Dicharry
,
H.
Delroisse
,
J.-P.
Torré
, and
G.
Barreto
, “
Using microscopic observations of cyclopentane hydrate crystal morphology and growth patterns to estimate the antiagglomeration capacity of surfactants
,”
Energy Fuels
34
,
5176
5187
(
2020
).
51.
M. A.
Kelland
,
T. M.
Svartaas
,
J.
Øvsthus
,
T.
Tomita
, and
K.
Mizuta
, “
Studies on some alkylamide surfactant gas hydrate anti-agglomerants
,”
Chem. Eng. Sci.
61
,
4290
4298
(
2006
), part of Special Issue: The John Bridgwater Symposium: “Shaping the Future of Chemical Engineering”.
52.
F.
Takeuchi
,
M.
Hiratsuka
,
R.
Ohmura
,
S.
Alavi
,
A. K.
Sum
, and
K.
Yasuoka
, “
Water proton configurations in structures I, II, and H clathrate hydrate unit cells
,”
J. Chem. Phys.
138
,
124504
(
2013
).
53.
J. L. F.
Abascal
,
E.
Sanz
,
R.
García Fernández
, and
C.
Vega
, “
A potential model for the study of ices and amorphous water: TIP4P/Ice
,”
J. Chem. Phys.
122
,
234511
(
2005
).
54.
J. J.
Potoff
and
J. I.
Siepmann
, “
Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen
,”
AIChE J.
47
,
1676
1682
(
2001
).
55.
J.
Wang
,
R. M.
Wolf
,
J. W.
Caldwell
,
P. A.
Kollman
, and
D. A.
Case
, “
Development and testing of a general amber force field
,”
J. Comput. Chem.
25
,
1157
1174
(
2004
).
56.
A.
Jakalian
,
B. L.
Bush
,
D. B.
Jack
, and
C. I.
Bayly
, “
Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method
,”
J. Comput. Chem.
21
,
132
146
(
2000
).
57.
A.
Jakalian
,
D. B.
Jack
, and
C. I.
Bayly
, “
Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation
,”
J. Comput. Chem.
23
,
1623
1641
(
2002
).
58.
A. W.
Sousa Da Silva
and
W. F.
Vranken
, “
ACPYPE—AnteChamber PYthon Parser interfacE
,”
BMC Res. Notes
5
,
367
(
2012
).
59.
J.
Wang
,
W.
Wang
,
P. A.
Kollman
, and
D. A.
Case
, “
Automatic atom type and bond type perception in molecular mechanical calculations
,”
J. Mol. Graphics Modell.
25
,
247
260
(
2006
).
60.
D. E.
Smith
and
L. X.
Dang
, “
Computer simulations of NaCl association in polarizable water
,”
J. Chem. Phys.
100
,
3757
3766
(
1994
).
61.
D.
Van Der Spoel
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C.
Berendsen
, “
GROMACS: Fast, flexible, and free
,”
J. Comput. Chem.
26
,
1701
1718
(
2005
).
62.
B.
Hess
,
C.
Kutzner
,
D.
van der Spoel
, and
E.
Lindahl
, “
GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation
,”
J. Chem. Theory Comput.
4
,
435
447
(
2008
).
63.
S.
Pronk
,
S.
Páll
,
R.
Schulz
,
P.
Larsson
,
P.
Bjelkmar
,
R.
Apostolov
,
M. R.
Shirts
,
J. C.
Smith
,
P. M.
Kasson
,
D.
van der Spoel
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit
,”
Bioinformatics
29
,
845
854
(
2013
).
64.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1-2
,
19
25
(
2015
).
65.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
66.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
1697
(
1985
).
67.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
7190
(
1981
).
68.
S.
Nosé
and
M. L.
Klein
, “
Constant pressure molecular dynamics for molecular systems
,”
Mol. Phys.
50
,
1055
1076
(
1983
).
69.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
, “
Molecular dynamics with coupling to an external bath
,”
J. Chem. Phys.
81
,
3684
3690
(
1984
).
70.
T.
Darden
,
D.
York
, and
L.
Pedersen
, “
Particle mesh Ewald: An N · log(N) method for Ewald sums in large systems
,”
J. Chem. Phys.
98
,
10089
10092
(
1993
).
71.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
, “
A smooth particle mesh Ewald method
,”
J. Chem. Phys.
103
,
8577
8593
(
1995
).
72.
B.
Fang
,
F.
Ning
,
S.
Hu
,
D.
Guo
,
W.
Ou
,
C.
Wang
,
J.
Wen
,
J.
Sun
,
Z.
Liu
, and
C. A.
Koh
, “
The effect of surfactants on hydrate particle agglomeration in liquid hydrocarbon continuous systems: A molecular dynamics simulation study
,”
RSC Adv.
10
,
31027
31038
(
2020
).
73.
T. Y.
Makogon
,
R.
Larsen
,
C. A.
Knight
, and
E.
Dendy Sloan
, “
Melt growth of tetrahydrofuran clathrate hydrate and its inhibition: Method and first results
,”
J. Cryst. Growth
179
,
258
262
(
1997
).
74.
P.
De Angelis
,
A.
Cardellini
, and
P.
Asinari
, “
Exploring the free energy landscape to predict the surfactant adsorption isotherm at the nanoparticle–water interface
,”
ACS Cent. Sci.
5
,
1804
1812
(
2019
).
75.
F.
Jiménez-Ángeles
and
A.
Firoozabadi
, “
Hydrophobic hydration and the effect of NaCl salt in the adsorption of hydrocarbons and surfactants on clathrate hydrates
,”
ACS Cent. Sci.
4
,
820
831
(
2018
).
76.
N.
Choudhary
,
S.
Das
,
S.
Roy
, and
R.
Kumar
, “
Effect of polyvinylpyrrolidone at methane hydrate-liquid water interface. Application in flow assurance and natural gas hydrate exploitation
,”
Fuel
186
,
613
622
(
2016
).
77.
C.
Jarzynski
, “
Nonequilibrium equality for free energy differences
,”
Phys. Rev. Lett.
78
,
2690
2693
(
1997
).
78.
S.
Park
and
K.
Schulten
, “
Calculating potentials of mean force from steered molecular dynamics simulations
,”
J. Chem. Phys.
120
,
5946
5961
(
2004
).
79.
S.
Park
,
F.
Khalili-Araghi
,
E.
Tajkhorshid
, and
K.
Schulten
, “
Free energy calculation from steered molecular dynamics simulations using Jarzynski’s equality
,”
J. Chem. Phys.
119
,
3559
3566
(
2003
).
80.
L. C.
Jacobson
,
W.
Hujo
, and
V.
Molinero
, “
Thermodynamic stability and growth of guest-free clathrate hydrates: A low-density crystal phase of water
,”
J. Phys. Chem. B
113
,
10298
10307
(
2009
).
81.
V. K.
Michalis
,
O. A.
Moultos
,
I. N.
Tsimpanogiannis
, and
I. G.
Economou
, “
Molecular dynamics simulations of the diffusion coefficients of light n-alkanes in water over a wide range of temperature and pressure
,”
Fluid Phase Equilib.
407
,
236
242
(
2016
), part of Special Issue: Aqueous Solutions.
82.
W.
Lu
,
I. M.
Chou
, and
R. C.
Burruss
, “
Determination of methane concentrations in water in equilibrium with Si methane hydrate in the absence of a vapor phase by in situ Raman spectroscopy
,”
Geochim. Cosmochim. Acta
72
,
412
422
(
2008
).
83.
I. N.
Tsimpanogiannis
,
I. G.
Economou
, and
A. K.
Stubos
, “
Methane solubility in aqueous solutions under two-phase (H–Lw) hydrate equilibrium conditions
,”
Fluid Phase Equilib.
371
,
106
120
(
2014
).
84.
L. A.
Báez
and
P.
Clancy
, “
Computer simulation of the crystal growth and dissolution of natural gas hydrates
,”
Ann. N. Y. Acad. Sci.
715
,
177
186
(
1994
).
85.
S.
Sarupria
and
P. G.
Debenedetti
, “
Homogeneous nucleation of methane hydrate in microsecond molecular dynamics simulations
,”
J. Phys. Chem. Lett.
3
,
2942
2947
(
2012
).
86.
F.
Jiménez-Ángeles
and
A.
Firoozabadi
, “
Nucleation of methane hydrates at moderate subcooling by molecular dynamics simulations
,”
J. Phys. Chem. C
118
,
11310
11318
(
2014
).
87.
D. L.
McCaffrey
,
S. C.
Nguyen
,
S. J.
Cox
,
H.
Weller
,
A. P.
Alivisatos
,
P. L.
Geissler
, and
R. J.
Saykally
, “
Mechanism of ion adsorption to aqueous interfaces: Graphene/water vs. air/water
,”
Proc. Natl. Acad. Sci. U. S. A.
114
,
13369
13373
(
2017
).
88.
M. R.
Walsh
,
C. A.
Koh
,
E. D.
Sloan
,
A. K.
Sum
, and
D. T.
Wu
, “
Microsecond simulations of spontaneous methane hydrate nucleation and growth
,”
Science
326
,
1095
1098
(
2009
).
89.
V. K.
Michalis
,
J.
Costandy
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
Prediction of the phase equilibria of methane hydrates using the direct phase coexistence methodology
,”
J. Chem. Phys.
142
,
044501
(
2015
).
90.
J.
Costandy
,
V. K.
Michalis
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates
,”
J. Chem. Phys.
143
,
094506
(
2015
).
91.
V. K.
Michalis
,
I. N.
Tsimpanogiannis
,
A. K.
Stubos
, and
I. G.
Economou
, “
Direct phase coexistence molecular dynamics study of the phase equilibria of the ternary methane–carbon dioxide–water hydrate system
,”
Phys. Chem. Chem. Phys.
18
,
23538
23548
(
2016
).
92.
D.
Nenow
and
A.
Trayanov
, “
Thermodynamics of crystal surfaces with quasi-liquid layer
,”
J. Cryst. Growth
79
,
801
805
(
1986
), part of Special Issue: Proceedings of the Eighth International Conference on Crystal Growth.

Supplementary Material

You do not currently have access to this content.