We model, via classical molecular dynamics simulations, the plastic phase of ice VII across a wide range of the phase diagram of interest for planetary investigations. Although structural and dynamical properties of plastic ice VII are mostly independent on the thermodynamic conditions, the hydrogen bond network (HBN) acquires a diverse spectrum of topologies distinctly different from that of liquid water and of ice VII simulated at the same pressure. We observe that the HBN topology of plastic ice carries some degree of similarity with the crystal phase, stronger at thermodynamic conditions proximal to ice VII, and gradually lessening when approaching the liquid state. Our results enrich our understanding of the properties of water at high pressure and high temperature and may help in rationalizing the geology of water-rich planets.

1.
C. G.
Salzmann
, “
Advances in the experimental exploration of water’s phase diagram
,”
J. Chem. Phys.
150
,
060901
(
2019
).
2.
F.
Martelli
,
Properties of Water from Numerical and Experimental Perspectives
(
CRC Press
,
2022
).
3.
W. J.
Nellis
,
D. C.
Hamilton
,
N. C.
Holmes
,
H. B.
Radousky
,
F. H.
Ree
,
A. C.
Mitchell
, and
M.
Nicol
, “
The nature of the interior of Uranus based on studies of planetary ices at high dynamic pressure
,”
Science
240
,
779
(
1988
).
4.
R. L.
Kirk
and
D. J.
Stevenson
, “
Hydromagnetic constraints on deep zonal flow in the giant planets
,”
Astrophys. J.
316
,
836
(
1988
).
5.
R.
Redmer
,
T. R.
Mattsson
,
N.
Nettelmann
, and
M.
French
, “
The phase diagram of water and the magnetic fields of Uranus and Neptune
,”
Icarus
211
,
798
803
(
2011
).
6.
L. E.
Bove
,
S.
Klotz
,
T.
Strässle
,
M.
Koza
,
J.
Teixeira
, and
A. M.
Saitta
, “
Translational and rotational diffusion in water in the gigapascal range
,”
Phys. Rev. Lett.
111
,
185901
(
2013
).
7.
J.
Sun
,
B. K.
Clark
,
S.
Torquato
, and
R.
Car
, “
The phase diagram of high-pressure superionic ice
,”
Nat. Commun.
6
,
8156
(
2015
).
8.
O.
Tschauner
,
S.
Huang
,
E.
Greenberg
,
V. B.
Prakapenka
,
C.
Ma
,
G. R.
Rossman
,
A. H.
Shen
,
D.
Zhang
,
M.
Newville
,
A.
Lanzirotti
, and
K.
Tait
, “
Ice-VII inclusions in diamonds: Evidence for aqueous fluid in Earth’s deep mantle
,”
Science
359
,
1136
1139
(
2018
).
9.
R.-S.
Taubner
,
K.
Olsson-Francis
,
S. D.
Vance
,
N. K.
Ramkissoon
,
F.
Postberg
,
J.-P.
de Vera
,
A.
Antunes
,
E.
Camprubi Casas
,
Y.
Sekine
,
L.
Noack
,
L.
Barge
,
J.
Goodman
,
M.
Jebbar
,
B.
Journaux
,
Ö.
Karatekin
,
F.
Klenner
,
E.
Rabbow
,
P.
Rettberg
,
T.
Rückriemen-Bez
,
J.
Saur
,
T.
Shibuya
, and
K. M.
Soderlund
, “
Experimental and simulation efforts in the astrobiological exploration of exooceans
,”
Space Sci. Rev.
216
,
9
41
(
2020
).
10.
F.
Martelli
,
N.
Giovambattista
,
S.
Torquato
, and
R.
Car
, “
Searching for crystal-ice domains in amorphous ices
,”
Phys. Rev. Mater.
2
,
075601
(
2018
).
11.
F.
Martelli
,
S.
Torquato
,
N.
Giovambattista
, and
R.
Car
, “
Large-scale structure and hyperuniformity of amorphous ices
,”
Phys. Rev. Lett.
119
,
136002
(
2017
).
12.
F.
Martelli
,
F.
Leoni
,
F.
Sciortino
, and
J.
Russo
, “
Connection between liquid and non-crystalline solid phases of water
,”
J. Chem. Phys.
153
,
104503
(
2020
).
13.
J.
Russo
,
F.
Leoni
,
F.
Martelli
, and
F.
Sciortino
, “
The physics of empty liquids: From patchy particles to water
,”
Rep. Prog. Phys.
85
,
016601
(
2022
).
14.
C. M.
Tonauer
,
E.-M.
Köck
,
T. M.
Gasser
,
V.
Fuentes-Landete
,
R.
Henn
,
S.
Mayr
,
C. G.
Kirchler
,
C. W.
Huck
, and
T.
Loerting
, “
Near-infrared spectra of high-density crystalline H2O ices II, IV, V, VI, IX, and XII
,”
J. Phys. Chem. A
125
,
1062
1068
(
2021
).
15.
L.
Tian
,
A. I.
Kolesnikov
, and
J.
Li
, “
Ab initio simulation of hydrogen bonding in ices under ultra-high pressure
,”
J. Chem. Phys.
137
,
204507
(
2012
).
16.
M.
Millot
,
F.
Coppari
,
J. R.
Rygg
,
A.
Correa Barrios
,
S.
Hamel
,
D. C.
Swift
, and
J. H.
Eggert
, “
Nanosecond x-ray diffraction of shock-compressed superionic water ice
,”
Nature
569
,
251
255
(
2019
).
17.
C. G.
Salzmann
,
P. G.
Radaelli
,
B.
Slater
, and
J. L.
Finney
, “
The polymorphism of ice: Five unresolved questions
,”
Phys. Chem. Chem. Phys.
13
,
18468
18480
(
2011
).
18.
C. G.
Salzmann
,
P. G.
Radaelli
,
A.
Hallbrucker
,
E.
Mayer
, and
J. L.
Finney
, “
The preparation and structures of hydrogen ordered phases of ice
,”
Science
311
,
1758
1761
(
2006
).
19.
C. G.
Salzmann
,
P. G.
Radaelli
,
E.
Mayer
, and
J. L.
Finney
, “
Ice XV: A new thermodynamically stable phase of ice
,”
Phys. Rev. Lett.
103
,
105701
(
2009
).
20.
S.
Klotz
,
L. E.
Bove
,
T.
Strässle
,
T. C.
Hansen
, and
A. M.
Saitta
, “
The preparation and structure of salty ice VII under pressure
,”
Nat. Mater.
8
,
405
409
(
2009
).
21.
S.
Klotz
,
K.
Komatsu
,
F.
Pietrucci
,
H.
Kagi
,
A.-A.
Ludl
,
S.
Machida
,
T.
Hattori
,
A.
Sano-Furukawa
, and
L. E.
Bove
, “
Ice VII from aqueous salt solutions: From a glass to a crystal with broken H-bonds
,”
Sci. Rep.
6
,
32040
(
2016
).
22.
B. J.
Murray
,
T. L.
Malkin
, and
C. G.
Salzmann
, “
The crystal structure of ice under mesospheric conditions
,”
J. Atmos. Sol.-Terr. Phys.
127
,
78
82
(
2015
).
23.
J. D.
Bernal
and
R. H.
Fowler
, “
A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions
,”
J. Chem. Phys.
1
,
515
548
(
1933
).
24.
C. P.
Herrero
and
R.
Ramírez
, “
Topological characterization of crystalline ice structures from coordination sequences
,”
Phys. Chem. Chem. Phys.
15
,
16676
16685
(
2013
).
25.
M.
Song
,
H.
Yamawaki
,
H.
Fujihisa
,
M.
Sakashita
, and
K.
Aoki
, “
Infrared investigation on ice VIII and the phase diagram of dense ices
,”
Phys. Rev. B
68
,
014106
(
2003
).
26.
M.
Song
,
H.
Yamawaki
,
H.
Fujihisa
,
M.
Sakashita
, and
K.
Aoki
, “
Infrared observation of the phase transitions of ice at low temperatures and pressures up to 50 GPa and the metastability of low-temperature ice VII
,”
Phys. Rev. B
68
,
024108
(
2003
).
27.
A. N.
Dunaeva
,
D. V.
Antsyshkin
, and
O. L.
Kuskov
, “
Phase diagram of H2O: Thermodynamic functions of the phase transitions of high-pressure ices
,”
Sol. Syst. Res.
44
,
202
222
(
2010
).
28.
L. E.
Bove
,
R.
Gaal
,
Z.
Raza
,
A.-A.
Ludl
,
S.
Klotz
,
A. M.
Saitta
,
A. F.
Goncharov
, and
P.
Gillet
, “
Effect of salt on the H-bond symmetrization in ice
,”
Proc. Natl. Acad. Sci. U. S. A.
112
,
8216
8220
(
2015
).
29.
B.
Journaux
,
I.
Daniel
,
S.
Petitgirard
,
H.
Cardon
,
J.-P.
Perrillat
,
R.
Caracas
, and
M.
Mezouar
, “
Salt partitioning between water and high-pressure ices. Implication for the dynamics and habitability of icy moons and water-rich planetary bodies
,”
Earth Planet. Sci. Lett.
463
,
36
47
(
2017
).
30.
J.-A.
Hernandez
,
R.
Caracas
, and
S.
Labrosse
, “
Stability of high-temperature salty ice suggests electrolyte permeability in water-rich exoplanet icy mantles
,”
Nat. Commun.
13
,
3303
(
2022
).
31.
Z.
Futera
,
J. S.
Tse
, and
N. J.
English
, “
Possibility of realizing superionic ice VII in external electric fields of planetary bodies
,”
Sci. Adv.
6
,
eaaz2915
(
2020
).
32.
C.
Cavezzoni
,
G. L.
Chiarotti
,
S.
Scandolo
,
E.
Tosatti
,
M.
Bernasconi
, and
M.
Parrinello
, “
Superionic and metallic states of water and ammonia at giant planet conditions
,”
Science
283
,
44
46
(
1999
).
33.
C. P.
Herrero
and
R.
Ramírez
, “
Path-integral simulation of ice VII: Pressure and temperature effects
,”
Chem. Phys.
461
,
125
136
(
2015
).
34.
V. B.
Prakapenka
,
N.
Holtgrewe
,
S. S.
Lobanov
, and
A. F.
Goncharov
, “
Structure and properties of two superionic ice phases
,”
Nat. Phys.
17
,
1233
1238
(
2021
).
35.
J.-A.
Hernandez
and
R.
Caracas
, “
Superionic-superionic phase transitions in body-centered cubic H2O ice
,”
Phys. Rev. Lett.
117
,
135503
(
2016
).
36.
M.
French
,
M. P.
Desjarlais
, and
R.
Redmer
, “
Ab initio calculation of thermodynamic potentials and entropies for superionic water
,”
Phys. Rev. E
93
,
022140
(
2016
).
37.
J.-A.
Hernandez
and
R.
Caracas
, “
Proton dynamics and the phase diagram of dense water ice
,”
J. Chem. Phys.
148
,
214501
(
2018
).
38.
Y.
Takii
,
K.
Koga
, and
H.
Tanaka
, “
A plastic phase of water from computer simulation
,”
J. Chem. Phys.
128
,
204501
(
2008
).
39.
J. L.
Aragones
and
C.
Vega
, “
Plastic crystal phases of simple water models
,”
J. Chem. Phys.
130
,
244504
(
2009
).
40.
J. L.
Aragones
,
M. M.
Conde
,
E. G.
Noya
, and
C.
Vega
, “
The phase diagram of water at high pressures as obtained by computer simulations of the TIP4P/2005 model: The appearance of a plastic crystal phase
,”
Phys. Chem. Chem. Phys.
11
,
543
555
(
2009
).
41.
K.
Mochizuki
,
K.
Himoto
, and
M.
Matsumoto
, “
Diversity of transition pathways in the course of crystallization into ice VII
,”
Phys. Chem. Chem. Phys.
16
,
16419
(
2014
).
42.
I.
Skarmoutsos
,
S.
Mossa
, and
E.
Guardia
, “
The effect of polymorphism on the structural, dynamic and dielectric properties of plastic crystal water: A molecular dynamics simulation perspective
,”
J. Chem. Phys.
150
,
124506
(
2019
).
43.
Y.
Adachi
and
K.
Koga
, “
Structure and phase behavior of high-density ice from molecular-dynamics simulations with the ReaxFF potential
,”
J. Chem. Phys.
153
,
114501
(
2020
).
44.
T. J.
Yoon
,
L. A.
Patel
,
T.
Ju
,
M. J.
Vigil
,
A. T.
Findikoglu
,
R. P.
Currier
, and
K. A.
Maerzke
, “
Thermodynamics, dynamics, and structure of supercritical water at extreme conditions
,”
Phys. Chem. Chem. Phys.
22
,
16051
16062
(
2020
).
45.
A.
Henao
,
J. M.
Salazar-Rios
,
E.
Guardia
, and
L. C.
Pardo
, “
Structure and dynamics of water plastic crystals from computer simulations
,”
J. Chem. Phys.
154
,
104501
(
2021
).
46.
I.
Skarmoutsos
,
A.
Henao
,
E.
Guardia
, and
J.
Samios
, “
On the different faces of the supercritical phase of water at a near-critical temperature: Pressure-induced structural transitions ranging from a gaslike fluid to a plastic crystal polymorph
,”
J. Phys. Chem. B
125
,
10260
10272
(
2021
).
47.
D.
Prasad
and
N.
Mitra
, “
High-temperature and high-pressure plastic phase of ice at the boundary of liquid water and ice VII
,”
Proc. R. Soc. A
478
,
20210958
(
2022
).
48.
M.
Matsumoto
,
K.
Himoto
, and
H.
Tanaka
, “
Spin-one Ising model for ice VII–plastic ice phase transitions
,”
J. Phys. Chem. B
118
,
13387
13392
(
2014
).
49.
J. L. F.
Abascal
and
C.
Vega
, “
A general purpose model for the condensed phases of water: TIP4P/2005
,”
J. Chem. Phys.
123
,
234505
(
2005
).
50.
M. M.
Conde
,
M. A.
Gonzalez
,
J. L. F.
Abascal
, and
C.
Vega
, “
Determining the phase diagram of water from direct coexistence simulations: The phase diagram of the TIP4P/2005 model revisited
,”
J. Chem. Phys.
139
,
154505
(
2013
).
51.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
, “
GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
,”
SoftwareX
1–2
,
19
25
(
2015
).
52.
S.
Nosé
, “
A molecular dynamics method for simulations in the canonical ensemble
,”
Mol. Phys.
52
,
255
268
(
1984
).
53.
W. G.
Hoover
, “
Canonical dynamics: Equilibrium phase-space distributions
,”
Phys. Rev. A
31
,
1695
(
1985
).
54.
M.
Parrinello
and
A.
Rahman
, “
Polymorphic transitions in single crystals: A new molecular dynamics method
,”
J. Appl. Phys.
52
,
7182
(
1981
).
55.
W. C.
Swope
,
H. C.
Andersen
,
P. H.
Berens
, and
K. R.
Wilson
, “
A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
,”
J. Chem. Phys.
76
,
637
649
(
1982
).
56.
M.
Matsumoto
,
T.
Yagasaki
, and
H.
Tanaka
, “
GenIce: Hydrogen-disordered ice generator
,”
J. Comput. Chem.
39
,
61
64
(
2017
).
57.
F.
Martelli
, “
Steady-like topology of the dynamical hydrogen bond network in supercooled water
,”
PNAS Nexus
1
,
pgac090
(
2022
).
58.
F.
Martelli
, “
Topology and complexity of the hydrogen bond network in classical models of water
,”
J. Mol. Liq.
329
,
115530
(
2021
).
59.
M.
Formanek
and
F.
Martelli
, “
Probing the network topology in network-forming materials: The case of water
,”
AIP Adv.
10
,
055205
(
2020
).
60.
F.
Martelli
, “
Unravelling the contribution of local structures to the anomalies of water: The synergistic action of several factors
,”
J. Chem. Phys.
150
,
094506
(
2020
).
61.
G.
Camisasca
,
D.
Schlesinger
,
I.
Zhovtobriukh
,
G.
Pitsevich
, and
L. G. M.
Pettersson
, “
A proposal for the structure of high- and low-density fluctuations in liquid water
,”
J. Chem. Phys.
151
,
034508
(
2019
).
62.
J. C.
Palmer
,
F.
Martelli
,
Y.
Liu
,
R.
Car
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
, “
Metastable liquid–liquid transition in a molecular model of water
,”
Nature
510
,
385
388
(
2014
).
63.
B.
Santra
,
R. A.
DiStasio
, Jr.
,
F.
Martelli
, and
R.
Car
,
Mol. Phys.
113
,
2829
2841
(
2015
).
64.
J.
Castagna
,
F.
Martelli
,
K. E.
Jordan
, and
J.
Crain
, “
Simulation of large molecular systems with electronically-derived forces
,”
Comput. Phys. Commun.
264
,
107959
(
2021
).
65.
R.
Foffi
,
J.
Russo
, and
F.
Sciortino
, “
Structural and topological changes across the liquid–liquid transition in water
,”
J. Chem. Phys.
154
,
184506
(
2021
).
66.
F.
Martelli
,
J.
Crain
, and
G.
Franzese
, “
Network topology in water nanoconfined between phospholipid membranes
,”
ACS Nano
14
,
8616
8623
(
2020
).
67.
M.
Chiricotto
,
F.
Martelli
,
G.
Giunta
, and
P.
Carbone
, “
The role of long-range electrostatic interactions and local topology of the hydrogen bond network in the wettability of fully and partially wetted single and multilayer graphene
,”
J. Phys. Chem. C
125
,
6367
6377
(
2021
).
68.
Z.
Wei
,
M.
Chiricotto
,
J. D.
Elliott
,
F.
Martelli
, and
P.
Carbone
, “
Wettability of graphite under 2D confinement
,”
Carbon
198
,
132
141
(
2022
).
69.
I.
Bakó
,
J.
Oláh
,
A.
Lábas
,
S.
Bálint
,
L.
Pusztai
, and
M. C.
Bellissent Funel
, “
Water-formamide mixtures: Topology of the hydrogen-bonded network
,”
J. Mol. Liq.
228
,
25
31
(
2017
).
70.
S.
Pothoczki
,
L.
Pusztai
, and
I.
Bakó
, “
Variations of the hydrogen bonding and hydrogen-bonded network in ethanol–water mixtures on cooling
,”
J. Phys. Chem. B
122
,
6790
6800
(
2018
).
71.
S.
Pothoczki
,
L.
Pusztai
, and
I.
Bakó
, “
Molecular dynamics simulation studies of the temperature-dependent structure and dynamics of isopropanol–water liquid mixtures at low alcohol content
,”
J. Phys. Chem. B
123
,
7599
7610
(
2019
).
72.
L.
Li
,
J.
Zhong
,
Y.
Yan
,
J.
Zhang
,
J.
Xu
,
J. S.
Francisco
, and
X. C.
Zeng
, “
Unraveling nucleation pathway in methane clathrate formation
,”
Proc. Natl. Acad. Sci. U. S. A.
117
,
24701
24708
(
2020
).
73.
S.
Le Roux
and
P.
Jund
, “
Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems
,”
Comput. Mater. Sci.
49
,
70
83
(
2010
).
74.
X.
Yuan
and
A. N.
Cormack
, “
Efficient algorithm for primitive ring statistics in topological networks
,”
Comput. Mater. Sci.
24
,
343
360
(
2002
).
75.
G.
Opetal
,
T. C.
Petersen
,
I. K.
Snook
, and
D. G.
McCulloch
, “
Modeling of structure and porosity in amorphous silicon systems using Monte Carlo methods
,”
J. Chem. Phys.
126
,
214705
(
2007
).
76.
P. K.
Roy
,
M.
Heyde
, and
A.
Heuer
, “
Modelling the atomic arrangement of amorphous 2D silica: A network analysis
,”
Phys. Chem. Chem. Phys.
20
,
14725
14739
(
2018
).
77.
Pk.
Roy
and
A.
Heuer
, “
Ring statistics in 2D silica: Effective temperatures in equilibrium
,”
Phys. Rev. Lett.
122
,
016104
(
2019
).
78.
D. K.
Limbu
,
R.
Atta-Fynn
, and
P.
Biswas
, “
Atomistic simulation of nearly defect-free models of amorphous silicon: An information-based approach
,”
MRS Adv.
4
,
87
93
(
2019
).
79.
J.
Hagedüs
and
S. R.
Elliott
, “
Microscopic origin of the fast crystallization ability of Ge–Sb–Te phase-change memory materials
,”
Nat. Mater.
7
,
399
405
(
2008
).
80.
W.-X.
Song
,
F.
Martelli
, and
Z.
Song
, “
Observing the spontaneous formation of a sub-critical nucleus in a phase-change amorphous material from ab initio molecular dynamics
,”
Mater. Sci. Semicond.
136
,
106102
(
2021
).
81.
A.
Neophytou
,
D.
Chakrabarti
, and
F.
Sciortino
, “
Facile self-assembly of colloidal diamond from tetrahedral patchy particles via ring selection
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2109776118
(
2021
).
82.
A.
Luzar
and
D.
Chandler
, “
Hydrogen-bond kinetics in liquid water
,”
Nature
379
,
55
57
(
1996
).
83.
D.
Prada-Gracia
,
R.
Shevchuk
, and
F.
Rao
, “
The quest for self-consistency in hydrogen bond definitions
,”
J. Chem. Phys.
139
,
084501
(
2013
).
84.
R.
Shi
,
J.
Russo
, and
H.
Tanaka
, “
Common microscopic structural origin for water’s thermodynamic and dynamic anomalies
,”
J. Chem. Phys.
149
,
224502
(
2018
).
85.
F.
Martelli
,
H.-Y.
Ko
,
E. C.
Oğuz
, and
R.
Car
, “
Local-order metric for condensed phase environments
,”
Phys. Rev. B
97
,
064105
(
2016
).
You do not currently have access to this content.