Variational autoencoders (VAEs) are rapidly gaining popularity within molecular simulation for discovering low-dimensional, or latent, representations, which are critical for both analyzing and accelerating simulations. However, it remains unclear how the information a VAE learns is connected to its probabilistic structure and, in turn, its loss function. Previous studies have focused on feature engineering, ad hoc modifications to loss functions, or adjustment of the prior to enforce desirable latent space properties. By applying effectively arbitrarily flexible priors via normalizing flows, we focus instead on how adjusting the structure of the decoding model impacts the learned latent coordinate. We systematically adjust the power and flexibility of the decoding distribution, observing that this has a significant impact on the structure of the latent space as measured by a suite of metrics developed in this work. By also varying weights on separate terms within each VAE loss function, we show that the level of detail encoded can be further tuned. This provides practical guidance for utilizing VAEs to extract varying resolutions of low-dimensional information from molecular dynamics and Monte Carlo simulations.

1.
P.
Gkeka
,
G.
Stoltz
,
A.
Barati Farimani
,
Z.
Belkacemi
,
M.
Ceriotti
,
J. D.
Chodera
,
A. R.
Dinner
,
A. L.
Ferguson
,
J.-B.
Maillet
,
H.
Minoux
,
C.
Peter
,
F.
Pietrucci
,
A.
Silveira
,
A.
Tkatchenko
,
Z.
Trstanova
,
R.
Wiewiora
, and
T.
Lelièvre
, “
Machine learning force fields and coarse-grained variables in molecular dynamics: Application to materials and biological systems
,”
J. Chem. Theory Comput.
16
,
4757
4775
(
2020
).
2.
A.
Glielmo
,
B. E.
Husic
,
A.
Rodriguez
,
C.
Clementi
,
F.
Noé
, and
A.
Laio
, “
Unsupervised learning methods for molecular simulation data
,”
Chem. Rev.
121
,
9722
9758
(
2021
).
3.
W.
Chen
,
A. R.
Tan
, and
A. L.
Ferguson
, “
Collective variable discovery and enhanced sampling using autoencoders: Innovations in network architecture and error function design
,”
J. Chem. Phys.
149
,
072312
(
2018
).
4.
J. M. L.
Ribeiro
,
P.
Bravo
,
Y.
Wang
, and
P.
Tiwary
, “
Reweighted autoencoded variational Bayes for enhanced sampling (RAVE)
,”
J. Chem. Phys.
149
,
072301
(
2018
).
5.
T.
Lemke
and
C.
Peter
, “
EncoderMap: Dimensionality reduction and generation of molecule conformations
,”
J. Chem. Theory Comput.
15
,
1209
1215
(
2019
).
6.
M.
Chakraborty
,
C.
Xu
, and
A. D.
White
, “
Encoding and selecting coarse-grain mapping operators with hierarchical graphs
,”
J. Chem. Phys.
149
,
134106
(
2018
).
7.
W.
Wang
and
R.
Gómez-Bombarelli
, “
Coarse-graining auto-encoders for molecular dynamics
,”
npj Comput. Mater.
5
,
125
(
2019
).
8.
M. M.
Sultan
,
H. K.
Wayment-Steele
, and
V. S.
Pande
, “
Transferable neural networks for enhanced sampling of protein dynamics
,”
J. Chem. Theory Comput.
14
,
1887
1894
(
2018
).
9.
C.
Wehmeyer
and
F.
Noé
, “
Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics
,”
J. Chem. Phys.
148
,
241703
(
2018
).
10.
Y. B.
Varolgünes
,
T.
Bereau
, and
J. F.
Rudzinski
, “
Interpretable embeddings from molecular simulations using Gaussian mixture variational autoencoders
,”
Mach. Learn.
1
,
015012
(
2020
).
11.
M.
Ghorbani
,
S.
Prasad
,
J. B.
Klauda
, and
B. R.
Brooks
, “
Variational embedding of protein folding simulations using Gaussian mixture variational autoencoders
,”
J. Chem. Phys.
155
,
194108
(
2021
).
12.
D. P.
Kingma
and
M.
Welling
, “
Auto-encoding variational Bayes
,” arXiv:1312.6114 [cs, stat] (
2014
).
13.
X.
Chen
,
D. P.
Kingma
,
T.
Salimans
,
Y.
Duan
,
P.
Dhariwal
,
J.
Schulman
,
I.
Sutskever
, and
P.
Abbeel
, “
Variational lossy autoencoder
,” arXiv:1611.02731 [cs, stat] (
2017
).
14.
S.
Kullback
and
R. A.
Leibler
, “
On information and sufficiency
,”
Ann. Math. Stat.
22
,
79
86
(
1951
).
15.
I.
Higgins
,
L.
Matthey
,
A.
Pal
,
C.
Burgess
,
X.
Glorot
,
M.
Botvinick
,
S.
Mohamed
, and
A.
Lerchner
, “
β-VAE: Learning basic visual concepts with a constrained variational framework
,” in
5th International Conference on Learning Representations
,
Toulon, France
,
2017
.
16.
W.
Chen
,
H.
Sidky
, and
A. L.
Ferguson
, “
Capabilities and limitations of time-lagged autoencoders for slow mode discovery in dynamical systems
,”
J. Chem. Phys.
151
,
064123
(
2019
).
17.
C. X.
Hernández
,
H. K.
Wayment-Steele
,
M. M.
Sultan
,
B. E.
Husic
, and
V. S.
Pande
, “
Variational encoding of complex dynamics
,”
Phys. Rev. E
97
,
062412
(
2018
); arXiv:1711.08576.
18.
R. T. Q.
Chen
,
X.
Li
,
R.
Grosse
, and
D.
Duvenaud
, “
Isolating sources of disentanglement in variational autoencoders
,” in Advances in Neural Information Processing Systems 31 (NeurIPS 2018); arXiv:1802.04942 [cs, stat] (
2019
).
19.
H.
Kim
and
A.
Mnih
, “
Disentangling by factorising
,” arXiv:1802.05983 [cs, stat] (
2019
).
20.
A.
Kumar
,
P.
Sattigeri
, and
A.
Balakrishnan
, “
Variational inference of disentangled latent concepts from unlabeled observations
,” in
6th International Conference on Learning Representations
,
Vancouver, BC, Canada
,
2018
.
21.
F.
Locatello
,
S.
Bauer
,
M.
Lucic
,
G.
Raetsch
,
S.
Gelly
,
B.
Schölkopf
, and
O.
Bachem
, “
Challenging common assumptions in the unsupervised learning of disentangled representations
,” in
Proceedings of the 36th International Conference on Machine Learning
, edited by
K.
Chaudhuri
and
R.
Salakhutdinov
(
Proceedings of Machine Learning Research, PMLR
,
2019
), Vol. 97, pp.
4114
4124
.
22.
J. M.
Lamim Ribeiro
and
P.
Tiwary
, “
Toward achieving efficient and accurate ligand-protein unbinding with deep learning and molecular dynamics through RAVE
,”
J. Chem. Theory Comput.
15
,
708
719
(
2019
).
23.
T.
Lemke
,
A.
Berg
,
A.
Jain
, and
C.
Peter
, “
EncoderMap(II): Visualizing important molecular motions with improved generation of protein conformations
,”
J. Chem. Inf. Model.
59
,
4550
4560
(
2019
).
24.
D. P.
Kingma
,
T.
Salimans
,
R.
Jozefowicz
,
X.
Chen
,
I.
Sutskever
, and
M.
Welling
, “
Improving variational inference with inverse autoregressive flow
,” arXiv:1606.04934 [cs, stat] (
2017
).
25.
D. J.
Rezende
and
S.
Mohamed
, “
Variational inference with normalizing flows
,” in Proceedings of the 32nd International Conference on Machine Learning, PMLR Vol. 37 (2015), pp. 1530–1538; arXiv:1505.05770 [cs, stat] (
2016
).
26.
G.
Papamakarios
,
E.
Nalisnick
,
D. J.
Rezende
,
S.
Mohamed
, and
B.
Lakshminarayanan
, “
Normalizing flows for probabilistic modeling and inference
,”
J. Mach. Learn. Res.
22
,
1
64
(
2021
); arXiv:1912.02762.
27.
M. D.
Hoffman
and
M. J.
Johnson
, “
ELBO surgery: Yet another way to carve up the variational evidence lower bound
,” in
30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 9 December 2016
.
28.
C.
Durkan
,
A.
Bekasov
,
I.
Murray
, and
G.
Papamakarios
, “
Neural spline flows
,” presented at the 33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada; arXiv:1906.04032 [cs, stat] (
2019
).
29.
L.
Dinh
,
J.
Sohl-Dickstein
, and
S.
Bengio
, “
Density estimation using Real NVP
,” arXiv:1605.08803 [cs, stat] (
2017
).
30.
J. V.
Dillon
,
I.
Langmore
,
D.
Tran
,
E.
Brevdo
,
S.
Vasudevan
,
D.
Moore
,
B.
Patton
,
A.
Alemi
,
M.
Hoffman
, and
R. A.
Saurous
, “
TensorFlow distributions
,” arXiv:1711.10604 [cs, stat] (
2017
).
31.
G.
Dorta
,
S.
Vicente
,
L.
Agapito
,
N. D. F.
Campbell
, and
I.
Simpson
, “
Structured uncertainty prediction networks
,” arXiv:1802.07079 [stat] (
2018
).
32.
G.
Dorta
,
S.
Vicente
,
L.
Agapito
,
N. D. F.
Campbell
, and
I.
Simpson
, “
Training VAEs under structured residuals
,” arXiv:1804.01050 [cs, stat] (
2018
).
33.
A.
van den Oord
,
N.
Kalchbrenner
,
O.
Vinyals
,
L.
Espeholt
,
A.
Graves
, and
K.
Kavukcuoglu
, “
Conditional image generation with PixelCNN decoders
,” 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 9 December 2016. arXiv:1606.05328 [cs] (
2016
).
34.
M.
Germain
,
K.
Gregor
,
I.
Murray
, and
H.
Larochelle
, “
MADE: Masked autoencoder for distribution estimation
,” in Proceedings of the 32nd International Conference on Machine Learning, PMLR Vol. 37 (2015), pp. 881–889; arXiv:1502.03509 [cs, stat] (
2015
).
35.
A. B.
Dieng
,
Y.
Kim
,
A. M.
Rush
, and
D. M.
Blei
, “
Avoiding latent variable collapse with generative skip models
,” in Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics, PMLR Vol. 89 (2019), pp. 2397–2405; arXiv:1807.04863 [cs, stat] (
2019
).
36.
G.
Papamakarios
,
T.
Pavlakou
, and
I.
Murray
, “
Masked autoregressive flow for density estimation
,” 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA; arXiv:1705.07057 [cs, stat] (
2018
).
37.
M.
Abadi
,
A.
Agarwal
,
P.
Barham
,
E.
Brevdo
,
Z.
Chen
,
C.
Citro
,
G. S.
Corrado
,
A.
Davis
,
J.
Dean
,
M.
Devin
,
S.
Ghemawat
,
I.
Goodfellow
,
A.
Harp
,
G.
Irving
,
M.
Isard
,
Y.
Jia
,
R.
Jozefowicz
,
L.
Kaiser
,
M.
Kudlur
,
J.
Levenberg
,
D.
Mané
,
R.
Monga
,
S.
Moore
,
D.
Murray
,
C.
Olah
,
M.
Schuster
,
J.
Shlens
,
B.
Steiner
,
I.
Sutskever
,
K.
Talwar
,
P.
Tucker
,
V.
Vanhoucke
,
V.
Vasudevan
,
F.
Viégas
,
O.
Vinyals
,
P.
Warden
,
M.
Wattenberg
,
M.
Wicke
,
Y.
Yu
, and
X.
Zheng
, “
TensorFlow: Large-scale machine learning on heterogeneous systems
,” tensorflow.org, (
2015
).
38.
D.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” Proceedings of the 3rd International Conference for Learning Representations, San Diego, 2015; arXiv:1412.6980 [cs] (
2017
).
39.
C. K.
Sønderby
,
T.
Raiko
,
L.
Maaløe
,
S. K.
Sønderby
, and
O.
Winther
, “
Ladder variational autoencoders
,” 30th Conference on Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 9 December 2016; arXiv:1602.02282 [cs, stat] (
2016
).
40.
H.
Jeffreys
,
Theory of Probability
, 3rd ed. (
Clarendon Press
,
Oxford
,
1961
).
41.
J. I.
Monroe
and
V. K.
Shen
, “
Learning efficient, collective Monte Carlo moves with variational autoencoders
,”
J. Chem. Theory Comput.
18
,
3622
3636
(
2022
).
42.
F.
Noé
,
S.
Olsson
,
J.
Köhler
, and
H.
Wu
, “
Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning
,”
Science
365
,
eaaw1147
(
2019
).
43.
F.
Noé
,
S.
Olsson
,
J.
Kohler
, and
W.
Hao
(
2021
). “
Boltzmann generators—Sampling equilibrium states of many-body systems with deep learning
,” Zenodo.
44.
P.
Eastman
,
J.
Swails
,
J. D.
Chodera
,
R. T.
McGibbon
,
Y.
Zhao
,
K. A.
Beauchamp
,
L.-P.
Wang
,
A. C.
Simmonett
,
M. P.
Harrigan
,
C. D.
Stern
,
R. P.
Wiewiora
,
B. R.
Brooks
, and
V. S.
Pande
, “
OpenMM 7: Rapid development of high performance algorithms for molecular dynamics
,”
PLoS Comput. Biol.
13
,
e1005659
(
2017
).
45.
V.
Hornak
,
R.
Abel
,
A.
Okur
,
B.
Strockbine
,
A.
Roitberg
, and
C.
Simmerling
, “
Comparison of multiple Amber force fields and development of improved protein backbone parameters
,”
Proteins: Struct., Funct., Bioinf.
65
,
712
725
(
2006
).
46.
N.
Michaud-Agrawal
,
E. J.
Denning
,
T. B.
Woolf
, and
O.
Beckstein
, “
MDAnalysis: A toolkit for the analysis of molecular dynamics simulations
,”
J. Comput. Chem.
32
,
2319
2327
(
2011
).
47.
R. J.
Gowers
,
M.
Linke
,
J.
Barnoud
,
T. J. E.
Reddy
,
M. N.
Melo
,
S. L.
Seyler
,
J.
Domański
,
D. L.
Dotson
,
S.
Buchoux
,
I. M.
Kenney
, and
O.
Beckstein
, “
MDAnalysis: A Python package for the rapid analysis of molecular dynamics simulations
,” in
Proceedings of the 15th Python in Science Conference
, Austin, TX, 11–17 July 2016, edited by
S.
Benthall
and
S.
Rostrup
pp.
98
105
.
48.
H.
Fu
,
C.
Li
,
X.
Liu
,
J.
Gao
,
A.
Celikyilmaz
, and
L.
Carin
, “
Cyclical annealing schedule: A simple approach to mitigating KL vanishing
,” Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, MN, June 2019 (Association for Computational Linguistics, 2019), pp. 240–250; arXiv:10.18653/v1/N19-1021 [cs, stat] (
2019
).
49.
M.
Figurnov
,
S.
Mohamed
, and
A.
Mnih
, “
Implicit reparameterization gradients
,” Advances in Neural Information Processing Systems 31 (NeurIPS 2018).
50.
D. J.
Rezende
,
G.
Papamakarios
,
S.
Racanière
,
M. S.
Albergo
,
G.
Kanwar
,
P. E.
Shanahan
, and
K.
Cranmer
, “
Normalizing flows on tori and spheres
,” Proceedings of the 37th International Conference on Machine Learning, PMLR Vol. 119 (2020), pp. 8083–8092; arXiv:2002.02428 [cs, stat] (
2020
).

Supplementary Material

You do not currently have access to this content.