In this paper, we study the nuclear gradients of heat bath configuration interaction self-consistent field (HCISCF) wave functions and use them to optimize molecular geometries for various molecules. We show that HCISCF nuclear gradients are fairly insensitive to the size of the “selected” variational space, which allows us to reduce the computational cost without introducing significant errors. The ability of the HCISCF to treat larger active spaces combined with the flexibility for users to control the computational cost makes the method very attractive for studying strongly correlated systems, which require a larger active space than possible with a complete active space self-consistent field. Finally, we study the realistic catalyst, Fe(PDI), and highlight some of the challenges this system poses for density functional theory (DFT). We demonstrate how HCISCF can clarify the energetic stability of geometries obtained from DFT when the results are strongly dependent on the functional. We also use the HCISCF gradients to optimize geometries for this species and study the adiabatic singlet–triplet gap. During geometry optimization, we find that multiple near-degenerate local minima exist on the triplet potential energy surface.

1.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
(
1980
).
2.
J.
Olsen
,
B. O.
Roos
,
P.
Jørgensen
, and
H. J. A.
Jensen
, “
Determinant based configuration interaction algorithms for complete and restricted configuration interaction spaces
,”
J. Chem. Phys.
89
,
2185
2192
(
1988
).
3.
P. Å.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
, “
The restricted active space self-consistent-field method, implemented with a split graph unitary group approach
,”
J. Phys. Chem.
94
,
5477
5482
(
1990
).
4.
K. D.
Vogiatzis
,
D.
Ma
,
J.
Olsen
,
L.
Gagliardi
, and
W. A.
De Jong
, “
Pushing configuration-interaction to the limit: Towards massively parallel MCSCF calculations
,”
J. Chem. Phys.
147
,
184111
(
2017
); arXiv:1707.04346.
5.
P.
Celani
and
H.-J.
Werner
, “
Multireference perturbation theory for large restricted and selected active space reference wave functions
,”
J. Chem. Phys.
112
,
5546
5557
(
2000
).
6.
T.
Fleig
,
J.
Olsen
, and
C. M.
Marian
, “
The generalized active space concept for the relativistic treatment of electron correlation. I. Kramers-restricted two-component configuration interaction
,”
J. Chem. Phys.
114
,
4775
4790
(
2001
).
7.
D.
Ma
,
G.
Li Manni
, and
L.
Gagliardi
, “
The generalized active space concept in multiconfigurational self-consistent field methods
,”
J. Chem. Phys.
135
,
044128
(
2011
).
8.
S. R.
White
, “
Density matrix formulation for quantum renormalization groups
,”
Phys. Rev. Lett.
69
,
2863
2866
(
1992
).
9.
S. R.
White
, “
Density-matrix algorithms for quantum renormalization groups
,”
Phys. Rev. B
48
,
10345
(
1993
).
10.
G.
Fano
,
F.
Ortolani
, and
L.
Ziosi
, “
The density matrix renormalization group method. Application to the PPP model of a cyclic polyene chain
,”
J. Chem. Phys.
108
,
9246
9252
(
1998
); arXiv:9803071 [cond-mat].
11.
S. R.
White
and
R. L.
Martin
, “
Ab initio quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
110
,
4127
(
1999
).
12.
U.
Schollwöck
, “
The density-matrix renormalization group
,”
Rev. Mod. Phys.
77
,
259
315
(
2005
); arXiv:0409292 [cond-mat].
13.
S.
Szalay
,
M.
Pfeffer
,
V.
Murg
,
G.
Barcza
,
F.
Verstraete
,
R.
Schneider
, and
Ö.
Legeza
, “
Tensor product methods and entanglement optimization for ab initio quantum chemistry
,”
Int. J. Quantum Chem.
115
,
1342
1391
(
2015
); arXiv:1412.5829.
14.
U.
Schollwöck
, “
The density-matrix renormalization group in the age of matrix product states
,”
Ann. Phys.
326
,
96
192
(
2011
); arXiv:1008.3477.
15.
S.
Daul
,
I.
Ciofini
,
C.
Daul
, and
S. R.
White
, “
Quantum chemistry using the density matrix renormalization group
,”
J. Chem. Phys.
115
,
6815
6821
(
2001
).
16.
G. K.-L.
Chan
and
M.
Head-Gordon
, “
Highly correlated calculations with a polynomial cost algorithm: A study of the density matrix renormalization group
,”
J. Chem. Phys.
116
,
4462
4476
(
2002
).
17.
G.
Moritz
and
M.
Reiher
, “
Construction of environment states in quantum-chemical density-matrix renormalization group calculations
,”
J. Chem. Phys.
124
,
034103
(
2006
).
18.
D.
Zgid
and
M.
Nooijen
, “
Obtaining the two-body density matrix in the density matrix renormalization group method
,”
J. Chem. Phys.
128
,
144115
(
2008
).
19.
H. G.
Luo
,
M. P.
Qin
, and
T.
Xiang
, “
Optimizing Hartree-Fock orbitals by the density-matrix renormalization group
,”
Phys. Rev. B
81
,
235129
(
2010
); arXiv:1002.1287.
20.
K. H.
Marti
and
M.
Reiher
, “
The density matrix renormalization group algorithm in quantum chemistry
,”
Z. Phys. Chem.
224
,
583
599
(
2010
).
21.
G. K.-L.
Chan
and
S.
Sharma
, “
The density matrix renormalization group in quantum chemistry
,”
Annu. Rev. Phys. Chem.
62
,
465
481
(
2011
).
22.
Y.
Kurashige
and
T.
Yanai
, “
Second-order perturbation theory with a density matrix renormalization group self-consistent field reference function: Theory and application to the study of chromium dimer
,”
J. Chem. Phys.
135
,
094104
(
2011
).
23.
S.
Sharma
and
G. K.-L.
Chan
, “
Spin-adapted density matrix renormalization group algorithms for quantum chemistry
,”
J. Chem. Phys.
136
,
124121
(
2012
).
24.
S.
Sharma
,
K.
Sivalingam
,
F.
Neese
, and
G. K.-L.
Chan
, “
Low-energy spectrum of iron–sulfur clusters directly from many-particle quantum mechanics
,”
Nat. Chem.
6
,
927
(
2014
); arXiv:1408.5080.
25.
Y.
Kurashige
,
G. K.-L.
Chan
, and
T.
Yanai
, “
Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II
,”
Nat. Chem.
5
,
660
(
2013
).
26.
S.
Wouters
,
T.
Bogaerts
,
P.
Van Der Voort
,
V.
Van Speybroeck
, and
D.
Van Neck
, “
Communication: DMRG-SCF study of the singlet, triplet, and quintet states of oxo-Mn(Salen)
,”
J. Chem. Phys.
140
,
241103
(
2014
).
27.
S.
Keller
and
M.
Reiher
, “
Spin-adapted matrix product states and operators
,”
J. Chem. Phys.
144
,
134101
(
2016
).
28.
Y.
Kurashige
, “
Multireference electron correlation methods with density matrix renormalization group reference functions
,”
Mol. Phys.
112
,
1485
1494
(
2014
).
29.
T.
Yanai
,
Y.
Kurashige
,
W.
Mizukami
,
J.
Chalupský
,
T. N.
Lan
, and
M.
Saitow
, “
Density matrix renormalization group for ab initio calculations and associated dynamic correlation methods: A review of theory and applications
,”
Int. J. Quantum Chem.
115
,
283
299
(
2015
).
30.
J.
Ivanic
and
K.
Ruedenberg
, “
Identification of deadwood in configuration spaces through general direct configuration interaction
,”
Theor. Chem. Acc.
106
,
339
351
(
2001
).
31.
B.
Huron
,
J. P.
Malrieu
, and
P.
Rancurel
, “
Iterative perturbation calculations of ground and excited state energies from multiconfigurational zeroth-order wavefunctions
,”
J. Chem. Phys.
58
,
5745
5759
(
1973
).
32.
R. J.
Buenker
and
S. D.
Peyerimhoff
, “
Individualized configuration selection in CI calculations with subsequent energy extrapolation
,”
Theor. Chim. Acta
35
,
33
58
(
1974
).
33.
F. A.
Evangelista
,
J. P.
Daudey
, and
J. P.
Malrieu
, “
Convergence of an improved CIPSI algorithm
,”
Chem. Phys.
75
,
91
102
(
1983
).
34.
R. J.
Harrison
, “
Approximating full configuration interaction with selected configuration interaction and perturbation theory
,”
J. Chem. Phys.
94
,
5021
5031
(
1991
).
35.
M. M.
Steiner
,
W.
Wenzel
,
K. G.
Wilson
, and
J. W.
Wilkins
, “
The efficient treatment of higher excitations in CI calculations. A comparison of exact and approximate results
,”
Chem. Phys. Lett.
231
,
263
268
(
1994
).
36.
W.
Wenzel
,
M. M.
Steiner
, and
K. G.
Wilson
, “
Multireference basis-set reduction
,”
Int. J. Quantum Chem.
60
,
1325
1330
(
1996
).
37.
F.
Neese
, “
A spectroscopy oriented configuration interaction procedure
,”
J. Chem. Phys.
119
,
9428
9443
(
2003
).
38.
M. L.
Abrams
and
C. D.
Sherrill
, “
Important configurations in configuration interaction and coupled-cluster wave functions
,”
Chem. Phys. Lett.
412
,
121
124
(
2005
).
39.
L.
Bytautas
and
K.
Ruedenberg
, “
A priori identification of configurational deadwood
,”
Chem. Phys.
356
,
64
75
(
2009
).
40.
F. A.
Evangelista
, “
A driven similarity renormalization group approach to quantum many-body problems
,”
J. Chem. Phys.
141
,
054109
(
2014
).
41.
P. J.
Knowles
, “
Compressive sampling in configuration interaction wavefunctions
,”
Mol. Phys.
113
,
1655
1660
(
2015
).
42.
J. B.
Schriber
and
F. A.
Evangelista
, “
Communication: An adaptive configuration interaction approach for strongly correlated electrons with tunable accuracy
,”
J. Chem. Phys.
144
,
161106
(
2016
); arXiv:1603.08063.
43.
W.
Liu
and
M. R.
Hoffmann
, “
ICI: Iterative CI toward full CI
,”
J. Chem. Theory Comput.
12
,
1169
1178
(
2016
).
44.
M.
Caffarel
,
T.
Applencourt
,
E.
Giner
, and
A.
Scemama
, “
Using CIPSI nodes in diffusion Monte Carlo
,”
ACS Symp. Ser.
1234
,
15
46
(
2016
); arXiv:1607.06742.
45.
N. M.
Tubman
,
J.
Lee
,
T. Y.
Takeshita
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
A deterministic alternative to the full configuration interaction quantum Monte Carlo method
,”
J. Chem. Phys.
145
,
044112
(
2016
); arXiv:1603.02686.
46.
Y.
Garniron
,
A.
Scemama
,
P.-F.
Loos
, and
M.
Caffarel
, “
Hybrid stochastic-deterministic calculation of the second-order perturbative contribution of multireference perturbation theory
,”
J. Chem. Phys.
147
,
034101
(
2017
).
47.
N. M.
Tubman
,
D. S.
Levine
,
D.
Hait
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
An efficient deterministic perturbation theory for selected configuration interaction methods
,” arXiv:1808.02049 (
2018
).
48.
N. M.
Tubman
,
C. D.
Freeman
,
D. S.
Levine
,
D.
Hait
,
M.
Head-Gordon
, and
K. B.
Whaley
, “
Modern approaches to exact diagonalization and selected configuration interaction with the adaptive sampling CI method
,”
J. Chem. Theory Comput.
16
,
2139
2159
(
2020
); arXiv:1807.00821.
49.
D. S.
Levine
,
D.
Hait
,
N. M.
Tubman
,
S.
Lehtola
,
K. B.
Whaley
, and
M.
Head-Gordon
, “
CASSCF with extremely large active spaces using the adaptive sampling configuration interaction method
,”
J. Chem. Theory Comput.
16
,
2340
2354
(
2020
); arXiv:1912.08379.
50.
G. H.
Booth
,
A. J. W.
Thom
, and
A.
Alavi
, “
Fermion Monte Carlo without fixed nodes: A game of life, death, and annihilation in slater determinant space
,”
J. Chem. Phys.
131
,
054106
(
2009
).
51.
D.
Cleland
,
G. H.
Booth
, and
A.
Alavi
, “
Communications: Survival of the fittest: Accelerating convergence in full configuration-interaction quantum Monte Carlo
,”
J. Chem. Phys.
132
,
041103
(
2010
).
52.
F. R.
Petruzielo
,
A. A.
Holmes
,
H. J.
Changlani
,
M. P.
Nightingale
, and
C. J.
Umrigar
, “
Semistochastic projector Monte Carlo method
,”
Phys. Rev. Lett.
109
,
230201
(
2012
); arXiv:1207.6138v2.
53.
R. E.
Thomas
,
Q.
Sun
,
A.
Alavi
, and
G. H.
Booth
, “
Stochastic multiconfigurational self-consistent field theory
,”
J. Chem. Theory Comput.
11
,
5316
5325
(
2015
); arXiv:1510.03635.
54.
A. A.
Holmes
,
N. M.
Tubman
, and
C. J.
Umrigar
, “
Heat-bath configuration interaction: An efficient selected configuration interaction algorithm inspired by heat-bath sampling
,”
J. Chem. Theory Comput.
12
,
3674
3680
(
2016
).
55.
S.
Sharma
,
A. A.
Holmes
,
G.
Jeanmairet
,
A.
Alavi
, and
C. J.
Umrigar
, “
Semistochastic heat-bath configuration interaction method: Selected configuration interaction with semistochastic perturbation theory
,”
J. Chem. Theory Comput.
13
,
1595
1604
(
2017
); arXiv:1610.06660v2.
56.
J. E. T.
Smith
,
B.
Mussard
,
A. A.
Holmes
, and
S.
Sharma
, “
Cheap and near exact CASSCF with large active spaces
,”
J. Chem. Theory Comput.
13
,
5468
5478
(
2017
); arXiv:1708.07544.
57.
B. F. E.
Curchod
and
T. J.
Martínez
, “
Ab initio nonadiabatic quantum molecular dynamics
,”
Chem. Rev.
118
,
3305
3336
(
2018
).
58.
R.
Guareschi
and
C.
Filippi
, “
Ground- and excited-state geometry optimization of small organic molecules with quantum Monte Carlo
,”
J. Chem. Theory Comput.
9
,
5513
5525
(
2013
).
59.
F.
Liu
,
Y.
Kurashige
,
T.
Yanai
, and
K.
Morokuma
, “
Multireference ab initio density matrix renormalization group (DMRG)-CASSCF and DMRG-CASPT2 study on the photochromic ring opening of spiropyran
,”
J. Chem. Theory Comput.
9
,
4462
4469
(
2013
).
60.
W.
Hu
and
G. K.-L.
Chan
, “
Excited-state geometry optimization with the density matrix renormalization group, as applied to polyenes
,”
J. Chem. Theory Comput.
11
,
3000
3009
(
2015
); arXiv:1502.07731.
61.
E.
Maradzike
,
G.
Gidofalvi
,
J. M.
Turney
,
H. F.
Schaefer
, and
A. E.
DePrince
, “
Analytic energy gradients for variational two-electron reduced-density-matrix-driven complete active space self-consistent field theory
,”
J. Chem. Theory Comput.
13
,
4113
4122
(
2017
).
62.
Y.
Ma
,
S.
Knecht
, and
M.
Reiher
, “
Multiconfigurational effects in theoretical resonance Raman spectra
,”
ChemPhysChem
18
,
384
393
(
2017
).
63.
A. W.
Schlimgen
and
D. A.
Mazziotti
, “
Analytical gradients of variational reduced-density-matrix and wavefunction-based methods from an overlap-reweighted semidefinite program
,”
J. Chem. Phys.
149
,
164111
(
2018
).
64.
M.
Dash
,
S.
Moroni
,
A.
Scemama
, and
C.
Filippi
, “
Perturbatively selected configuration-interaction wave functions for efficient geometry optimization in quantum Monte Carlo
,”
J. Chem. Theory Comput.
14
,
4176
4182
(
2018
); arXiv:1804.09610.
65.
M.
Dash
,
J.
Feldt
,
S.
Moroni
,
A.
Scemama
, and
C.
Filippi
, “
Excited states with selected configuration interaction-quantum Monte Carlo: Chemically accurate excitation energies and geometries
,”
J. Chem. Theory Comput.
15
,
4896
4906
(
2019
).
66.
L.
Freitag
,
Y.
Ma
,
A.
Baiardi
,
S.
Knecht
, and
M.
Reiher
, “
Approximate analytical gradients and nonadiabatic couplings for the state-average density matrix renormalization group self-consistent-field method
,”
J. Chem. Theory Comput.
15
,
6724
6737
(
2019
); arXiv:1905.01558.
67.
J. W.
Park
, “
Second-order orbital optimization with large active space using adaptive sampling configuration interaction (ASCI) and its application to molecular geometry optimization
,”
J. Chem. Theory Comput.
17
,
1522
1534
(
2021
).
68.
J. W.
Park
, “
Near-exact CASSCF-level geometry optimization with a large active space using adaptive sampling configuration interaction self-consistent field corrected with second-order perturbation theory (ASCI-SCF-PT2)
,”
J. Chem. Theory Comput.
17
,
4092
4104
(
2021
).
69.
Q.
Sun
, “
Libcint: An efficient general integral library for Gaussian basis functions
,”
J. Comput. Chem.
36
,
1664
1671
(
2015
); arXiv:1412.0649.
70.
Q.
Sun
,
J.
Yang
, and
G. K.-L.
Chan
, “
A general second order complete active space self-consistent-field solver for large-scale systems
,”
Chem. Phys. Lett.
683
,
291
299
(
2017
); arXiv:1610.08394.
71.
Q.
Sun
,
T. C.
Berkelbach
,
N. S.
Blunt
,
G. H.
Booth
,
S.
Guo
,
Z.
Li
,
J.
Liu
,
J. D.
McClain
,
E. R.
Sayfutyarova
,
S.
Sharma
,
S.
Wouters
, and
G. K. L.
Chan
, “
PySCF: The python-based simulations of chemistry framework
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1340
(
2018
); arXiv:1701.08223.
72.
Q.
Sun
,
X.
Zhang
,
S.
Banerjee
,
P.
Bao
,
M.
Barbry
,
N. S.
Blunt
,
N. A.
Bogdanov
,
G. H.
Booth
,
J.
Chen
,
Z.-H.
Cui
,
J. J.
Eriksen
,
Y.
Gao
,
S.
Guo
,
J.
Hermann
,
M. R.
Hermes
,
K.
Koh
,
P.
Koval
,
S.
Lehtola
,
Z.
Li
,
J.
Liu
,
N.
Mardirossian
,
J. D.
McClain
,
M.
Motta
,
B.
Mussard
,
H. Q.
Pham
,
A.
Pulkin
,
W.
Purwanto
,
P. J.
Robinson
,
E.
Ronca
,
E. R.
Sayfutyarova
,
M.
Scheurer
,
H. F.
Schurkus
,
J. E. T.
Smith
,
C.
Sun
,
S.-N.
Sun
,
S.
Upadhyay
,
L. K.
Wagner
,
X.
Wang
,
A.
White
,
J. D.
Whitfield
,
M. J.
Williamson
,
S.
Wouters
,
J.
Yang
,
J. M.
Yu
,
T.
Zhu
,
T. C.
Berkelbach
,
S.
Sharma
,
A. Y.
Sokolov
, and
G. K.-L.
Chan
, “
Recent developments in the PySCF program package
,”
J. Chem. Phys.
153
,
024109
(
2020
); arXiv:2002.12531.
73.
M. A.
Ortuño
and
C. J.
Cramer
, “
Multireference electronic structures of Fe-pyridine(diimine) complexes over multiple oxidation states
,”
J. Phys. Chem. A
121
,
5932
5939
(
2017
).
74.
S. C. E.
Stieber
,
C.
Milsmann
,
J. M.
Hoyt
,
Z. R.
Turner
,
K. D.
Finkelstein
,
K.
Wieghardt
,
S.
Debeer
, and
P. J.
Chirik
, “
Bis(imino)pyridine iron dinitrogen compounds revisited: Differences in electronic structure between four- and five-coordinate derivatives
,”
Inorg. Chem.
51
,
3770
3785
(
2012
).
75.
P. S.
Epstein
, “
The Stark effect from the point of view of Schroedinger’s quantum theory
,”
Phys. Rev.
28
,
695
710
(
1926
).
76.
R. K.
Nesbet
, “
Configuration interaction in orbital theories
,”
Proc. R. Soc. London, Ser. A
230
,
312
321
(
1955
).
77.
Y.
Garniron
,
T.
Applencourt
,
K.
Gasperich
,
A.
Benali
,
A.
Ferté
,
J.
Paquier
,
B.
Pradines
,
R.
Assaraf
,
P.
Reinhardt
,
J.
Toulouse
,
P.
Barbaresco
,
N.
Renon
,
G.
David
,
J.-P.
Malrieu
,
M.
Véril
,
M.
Caffarel
,
P.-F.
Loos
,
E.
Giner
, and
A.
Scemama
, “
Quantum package 2.0: An open-source determinant-driven suite of programs
,”
J. Chem. Theory Comput.
15
,
3591
3609
(
2019
); arXiv:1902.08154.
78.
J.
Li
,
M.
Otten
,
A. A.
Holmes
,
S.
Sharma
, and
C. J.
Umrigar
, “
Fast semistochastic heat-bath configuration interaction
,”
J. Chem. Phys.
149
,
214110
(
2018
); arXiv:1809.04600.
79.
Y.
Yamaguchi
and
H. F.
Schaefer
, “
Analytic derivative methods in molecular electronic structure theory: A new dimension to quantum chemistry and its applications to spectroscopy
,” in
Handbook of High-Resolution Spectroscopy
(
John Wiley & Sons
,
2011
), pp.
325
362
.
80.
N. C.
Handy
and
H. F.
Schaefer
, “
On the evaluation of analytic energy derivatives for correlated wave functions
,”
J. Chem. Phys.
81
,
5031
5033
(
1984
).
81.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A. J.
Montgomery
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, “Gaussian 16 Revision C.01 Release Notes,”
2016
.
82.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
,
Z.
Gan
,
D.
Hait
,
P. R.
Horn
,
L. D.
Jacobson
,
I.
Kaliman
,
J.
Kussmann
,
A. W.
Lange
,
K. U.
Lao
,
D. S.
Levine
,
J.
Liu
,
S. C.
McKenzie
,
A. F.
Morrison
,
K. D.
Nanda
,
F.
Plasser
,
D. R.
Rehn
,
M. L.
Vidal
,
Z.-Q.
You
,
Y.
Zhu
,
B.
Alam
,
B. J.
Albrecht
,
A.
Aldossary
,
E.
Alguire
,
J. H.
Andersen
,
V.
Athavale
,
D.
Barton
,
K.
Begam
,
A.
Behn
,
N.
Bellonzi
,
Y. A.
Bernard
,
E. J.
Berquist
,
H. G. A.
Burton
,
A.
Carreras
,
K.
Carter-Fenk
,
R.
Chakraborty
,
A. D.
Chien
,
K. D.
Closser
,
V.
Cofer-Shabica
,
S.
Dasgupta
,
M.
De Wergifosse
,
J.
Deng
,
M.
Diedenhofen
,
H.
Do
,
S.
Ehlert
,
P.-T.
Fang
,
S.
Fatehi
,
Q.
Feng
,
T.
Friedhoff
,
J.
Gayvert
,
Q.
Ge
,
G.
Gidofalvi
,
M.
Goldey
,
J.
Gomes
,
C. E.
González-Espinoza
,
S.
Gulania
,
A. O.
Gunina
,
M. W. D.
Hanson-Heine
,
P. H. P.
Harbach
,
A.
Hauser
,
M. F.
Herbst
,
M.
Hernández Vera
,
M.
Hodecker
,
Z. C.
Holden
,
S.
Houck
,
X.
Huang
,
K.
Hui
,
B. C.
Huynh
,
M.
Ivanov
,
Á.
Jász
,
H.
Ji
,
H.
Jiang
,
B.
Kaduk
,
S.
Kähler
,
K.
Khistyaev
,
J.
Kim
,
G.
Kis
,
P.
Klunzinger
,
Z.
Koczor-Benda
,
J. H.
Koh
,
D.
Kosenkov
,
L.
Koulias
,
T.
Kowalczyk
,
C. M.
Krauter
,
K.
Kue
,
A.
Kunitsa
,
T.
Kus
,
I.
Ladjánszki
,
A.
Landau
,
K. V.
Lawler
,
D.
Lefrancois
,
S.
Lehtola
,
R. R.
Li
,
Y.-P.
Li
,
J.
Liang
,
M.
Liebenthal
,
H.-H.
Lin
,
Y.-S.
Lin
,
F.
Liu
,
K.-Y.
Liu
,
M.
Loipersberger
,
A.
Luenser
,
A.
Manjanath
,
P.
Manohar
,
E.
Mansoor
,
S. F.
Manzer
,
S.-P.
Mao
,
A. V.
Marenich
,
T.
Markovich
,
S.
Mason
,
S. A.
Maurer
,
P. F.
McLaughlin
,
M. F. S. J.
Menger
,
J.-M.
Mewes
,
S. A.
Mewes
,
P.
Morgante
,
J. W.
Mullinax
,
K. J.
Oosterbaan
,
G.
Paran
,
A. C.
Paul
,
S. K.
Paul
,
F.
Pavošević
,
Z.
Pei
,
S.
Prager
,
E. I.
Proynov
,
Á.
Rák
,
E.
Ramos-Cordoba
,
B.
Rana
,
A. E.
Rask
,
A.
Rettig
,
R. M.
Richard
,
F.
Rob
,
E.
Rossomme
,
T.
Scheele
,
M.
Scheurer
,
M.
Schneider
,
N.
Sergueev
,
S. M.
Sharada
,
W.
Skomorowski
,
D. W.
Small
,
C. J.
Stein
,
Y.-C.
Su
,
E. J.
Sundstrom
,
Z.
Tao
,
J.
Thirman
,
G. J.
Tornai
,
T.
Tsuchimochi
,
N. M.
Tubman
,
S. P.
Veccham
,
O.
Vydrov
,
J.
Wenzel
,
J.
Witte
,
A.
Yamada
,
K.
Yao
,
S.
Yeganeh
,
S. R.
Yost
,
A.
Zech
,
I. Y.
Zhang
,
X.
Zhang
,
Y.
Zhang
,
D.
Zuev
,
A.
Aspuru-Guzik
,
A. T.
Bell
,
N. A.
Besley
,
K. B.
Bravaya
,
B. R.
Brooks
,
D.
Casanova
,
J.-D.
Chai
,
S.
Coriani
,
C. J.
Cramer
,
G.
Cserey
,
A. E.
Deprince
,
R. A.
Distasio
,
A.
Dreuw
,
B. D.
Dunietz
,
T. R.
Furlani
,
W. A.
Goddard
,
S.
Hammes-Schiffer
,
T.
Head-Gordon
,
W. J.
Hehre
,
C.-P.
Hsu
,
T.-C.
Jagau
,
Y.
Jung
,
A.
Klamt
,
J.
Kong
,
D. S.
Lambrecht
,
W.
Liang
,
N. J.
Mayhall
,
C. W.
McCurdy
,
J. B.
Neaton
,
C.
Ochsenfeld
,
J. A.
Parkhill
,
R.
Peverati
,
V. A.
Rassolov
,
Y.
Shao
,
L. V.
Slipchenko
,
T.
Stauch
,
R. P.
Steele
,
J. E.
Subotnik
,
A. J. W.
Thom
,
A.
Tkatchenko
,
D. G.
Truhlar
,
T.
Van Voorhis
,
T. A.
Wesolowski
,
K. B.
Whaley
,
H. L.
Woodcock
,
P. M.
Zimmerman
,
S.
Faraji
,
P. M. W.
Gill
,
M.
Head-Gordon
,
J. M.
Herbert
, and
A. I.
Krylov
, “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
83.
L.-P.
Wang
and
C.
Song
, “
Geometry optimization made simple with translation and rotation coordinates
,”
J. Chem. Phys.
144
,
214108
(
2016
).
84.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
85.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
, “
Rationale for mixing exact exchange with density functional approximations
,”
J. Chem. Phys.
105
,
9982
9985
(
1996
).
86.
C.
Adamo
and
V.
Barone
, “
Toward reliable density functional methods without adjustable parameters: The PBE0 model
,”
J. Chem. Phys.
110
,
6158
6170
(
1999
).
87.
S.
Keller
,
K.
Boguslawski
,
T.
Janowski
,
M.
Reiher
, and
P.
Pulay
, “
Selection of active spaces for multiconfigurational wavefunctions
,”
J. Chem. Phys.
142
,
244104
(
2015
).
88.
J. M.
Bofill
and
P.
Pulay
, “
The unrestricted natural orbital-complete active space (UNO-CAS) method: An inexpensive alternative to the complete active space-self-consistent-field (CAS-SCF) method
,”
J. Chem. Inf. Model.
90
,
3637
(
1989
).
89.
P.
Pulay
, “
Convergence acceleration of iterative sequences. The case of SCF iteration
,”
Chem. Phys. Lett.
73
,
393
398
(
1980
).
90.
X.
Hu
and
W.
Yang
, “
Accelerating self-consistent field convergence with the augmented Roothaan-Hall energy function
,”
J. Chem. Phys.
132
,
054109
(
2010
).
91.
W.
Kabsch
, “
A discussion of the solution for the best rotation to relate two sets of vectors
,”
Acta Crystallogr., Sect. A: Found. Crystallogr.
32
,
922
923
(
1976
).
92.
J. C.
Kromann
, “RMSD,”
2020
.
93.
A. W.
Schlimgen
and
D. A.
Mazziotti
, “
Static and dynamic electron correlation in the ligand noninnocent oxidation of nickel dithiolates
,”
J. Phys. Chem. A
121
,
9377
9384
(
2017
).
94.
D. A.
Kreplin
,
P. J.
Knowles
, and
H.-J.
Werner
, “
Second-order MCSCF optimization revisited. I. Improved algorithms for fast and robust second-order CASSCF convergence
,”
J. Chem. Phys.
150
,
194106
(
2019
).
95.
Y.
Yao
and
C. J.
Umrigar
, “
Orbital optimization in selected configuration interaction methods
,”
J. Chem. Theory Comput.
17
,
4183
4194
(
2021
); arXiv:2104.02587.
96.
Y.
Zhao
and
D. G.
Truhlar
, “
A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions
,”
J. Chem. Phys.
125
,
194101
(
2006
).
97.
Y.
Zhao
and
D. G.
Truhlar
, “
The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function
,”
Theor. Chem. Acc.
120
,
215
241
(
2008
).
98.
H. S.
Yu
,
X.
He
,
S. L.
Li
, and
D. G.
Truhlar
, “
MN15: A Kohn-Sham global-hybrid exchange-correlation density functional with broad accuracy for multi-reference and single-reference systems and noncovalent interactions
,”
Chem. Sci.
7
,
5032
5051
(
2016
).
99.
J. W.
Mullinax
,
E.
Epifanovsky
,
G.
Gidofalvi
, and
A. E.
DePrince
, “
Analytic energy gradients for variational two-electron reduced-density matrix methods within the density fitting approximation
,”
J. Chem. Theory Comput.
15
,
276
289
(
2019
).
100.
P. M.
Zimmerman
and
A. E.
Rask
, “
Evaluation of full valence correlation energies and gradients
,”
J. Chem. Phys.
150
,
244117
(
2019
).
You do not currently have access to this content.