While bonding molecular orbitals exhibit constructive interference relative to atomic orbitals, antibonding orbitals show destructive interference. When full localization of occupied orbitals into bonds is possible, bonding and antibonding orbitals exist in 1:1 correspondence with each other. Antibonding orbitals play an important role in chemistry because they are frontier orbitals that determine orbital interactions, as well as much of the response of the bonding orbital to perturbations. In this work, we present an efficient method to construct antibonding orbitals by finding the orbital that yields the maximum opposite spin pair correlation amplitude in second order perturbation theory (AB2) and compare it with other techniques with increasing basis set size. We conclude the AB2 antibonding orbitals are a more robust alternative to the Sano orbitals as initial guesses for valence bond calculations due to having a useful basis set limit. The AB2 orbitals are also useful for efficiently constructing an active space, and they work as good initial guesses for valence excited states. In addition, when combined with the localized occupied orbitals, and relocalized, the result is a set of molecule-adapted minimal basis functions that is built without any reference to atomic orbitals of the free atom. As examples, they are applied to the population analysis of halogenated methane derivatives, H–Be–Cl, and SF6, where they show some advantages relative to good alternative methods.

1.
A.
Szabo
and
N. L.
Ostlund
,
Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory
(
Dover Publications
,
1996
).
2.
F.
Jensen
,
Angewandte Chemie International Edition
, 2nd ed. (
Wiley
,
2007
), p.
624
.
3.
P.
Echenique
and
J. L.
Alonso
, “
A mathematical and computational review of Hartree-Fock SCF methods in quantum chemistry
,”
Mol. Phys.
105
,
3057
3098
(
2007
).
4.
W.
Kohn
,
A. D.
Becke
, and
R. G.
Parr
, “
Density functional theory of electronic structure
,”
J. Phys. Chem.
100
,
12974
12980
(
1996
).
5.
R. G.
Parr
and
W.
Yang
,
Density-Functional Theory of Atoms and Molecules
(
Oxford University Press
,
1989
).
6.
K.
Burke
and
L. O.
Wagner
, “
DFT in a nutshell
,”
Int. J. Quantum Chem.
113
,
96
101
(
2013
).
7.
N.
Mardirossian
and
M.
Head-Gordon
, “
Thirty years of density functional theory in computational chemistry: An overview and extensive assessment of 200 density functionals
,”
Mol. Phys.
115
,
2315
2372
(
2017
).
8.
P.
Pulay
, “
Localizability of dynamic electron correlation
,”
Chem. Phys. Lett.
100
,
151
154
(
1983
).
9.
S.
Saebo
and
P.
Pulay
, “
Local treatment of electron correlation
,”
Annu. Rev. Phys. Chem.
44
,
213
236
(
1993
).
10.
P. E.
Maslen
,
C.
Ochsenfeld
,
C. A.
White
,
M. S.
Lee
, and
M.
Head-Gordon
, “
Locality and sparsity of ab initio one-particle density matrices and localized orbitals
,”
J. Phys. Chem. A
102
,
2215
2222
(
1998
).
11.
J. E.
Subotnik
,
A. D.
Dutoi
, and
M.
Head-Gordon
, “
Fast localized orthonormal virtual orbitals which depend smoothly on nuclear coordinates
,”
J. Chem. Phys.
123
,
114108
(
2005
).
12.
F.
Aquilante
,
T.
Bondo Pedersen
,
A.
Sánchez de Merás
, and
H.
Koch
, “
Fast noniterative orbital localization for large molecules
,”
J. Chem. Phys.
125
,
174101
(
2006
).
13.
M. W.
Schmidt
,
E. A.
Hull
, and
T. L.
Windus
, “
Valence virtual orbitals: An unambiguous ab initio quantification of the LUMO concept
,”
J. Phys. Chem. A
119
,
10408
10427
(
2015
).
14.
A. E.
Reed
and
F.
Weinhold
, “
Natural bond orbital analysis of near-Hartree-Fock water dimer
,”
J. Chem. Phys.
78
,
4066
4073
(
1983
).
15.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
, “
Intermolecular interactions from a natural bond orbital, donor–acceptor viewpoint
,”
Chem. Rev.
88
,
899
926
(
1988
).
16.
K.
Fukui
, “
Role of Frontier orbitals in chemical reactions
,”
Science
218
,
747
754
(
1982
).
17.
K.
Fukui
,
The Role of Frontier Orbitals in Chemical Reactions
(
Nobel Lecture
,
1982
).
18.
R.
Hoffmann
,
Building Bridges Between Inorganic and Organic Chemistry
(
Nobel Lecture
,
1982
).
19.
R. Z.
Khaliullin
,
A. T.
Bell
, and
M.
Head-Gordon
, “
Electron donation in the water-water hydrogen bond
,”
Chem. - Eur. J.
15
,
851
855
(
2009
).
20.
A. C.
Hurley
and
J. E.
Lennard-Jones
, “
The molecular orbital theory of chemical valency XIV. Paired electrons in the presence of two unlike attracting centres
,”
Proc. R. Soc. London, Ser. A
218
,
327
333
(
1953
).
21.
M. S.
Lee
and
M.
Head-Gordon
, “
Polarized atomic orbitals for self-consistent field electronic structure calculations
,”
J. Chem. Phys.
107
,
9085
9095
(
1997
).
22.
S.
Iwata
, “
Valence type vacant orbitals for configuration interaction calculations
,”
Chem. Phys. Lett.
83
,
134
138
(
1981
).
23.
E. R.
Sayfutyarova
,
Q.
Sun
,
G. K.-L.
Chan
, and
G.
Knizia
, “
Automated construction of molecular active spaces from atomic valence orbitals
,”
J. Chem. Theory Comput.
13
,
4063
4078
(
2017
).
24.
W. D.
Derricotte
and
F. A.
Evangelista
, “
Localized intrinsic valence virtual orbitals as a tool for the automatic classification of core excited states
,”
J. Chem. Theory Comput.
13
,
5984
5999
(
2017
).
25.
Q.
Wang
,
J.
Zou
,
E.
Xu
,
P.
Pulay
, and
S.
Li
, “
Automatic construction of the initial orbitals for efficient generalized valence bond calculations of large systems
,”
J. Chem. Theory Comput.
15
,
141
153
(
2018
).
26.
M. S.
Lee
and
M.
Head-Gordon
, “
Extracting polarized atomic orbitals from molecular orbital calculations
,”
Int. J. Quantum Chem.
76
,
169
184
(
2000
).
27.
D. N.
Laikov
, “
Intrinsic minimal atomic basis representation of molecular electronic wavefunctions
,”
Int. J. Quantum Chem.
111
,
2851
2867
(
2011
).
28.
T.
Sano
, “
Elementary Jacobi rotation method for generalized valence bond perfect-pairing calculations combined with simple procedure for generating reliable initial orbitals
,”
J. Mol. Struct.: THEOCHEM
528
,
177
191
(
2000
).
29.
J. M.
Foster
and
S. F.
Boys
, “
Canonical configurational interaction procedure
,”
Rev. Mod. Phys.
32
,
300
302
(
1960
).
30.
J.
Yang
,
Y.
Kurashige
,
F. R.
Manby
, and
G. K.-L.
Chan
, “
Tensor factorizations of local second-order Møller–Plesset theory
,”
J. Chem. Phys.
134
,
044123
(
2011
).
31.
Y.
Kurashige
,
J.
Yang
,
G. K.-L.
Chan
, and
F. R.
Manby
, “
Optimization of orbital-specific virtuals in local Møller-Plesset perturbation theory
,”
J. Chem. Phys.
136
,
124106
(
2012
).
32.
J.
Yang
,
G. K.-L.
Chan
,
F. R.
Manby
,
M.
Schütz
, and
H.-J.
Werner
, “
The orbital-specific-virtual local coupled cluster singles and doubles method
,”
J. Chem. Phys.
136
,
144105
(
2012
).
33.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
, “
Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis
,”
J. Chem. Phys.
131
,
064103
(
2009
).
34.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
, “
Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method
,”
J. Chem. Phys.
130
,
114108
(
2009
).
35.
C.
Riplinger
and
F.
Neese
, “
An efficient and near linear scaling pair natural orbital based local coupled cluster method
,”
J. Chem. Phys.
138
,
034106
(
2013
).
36.
C.
Hampel
and
H. J.
Werner
, “
Local treatment of electron correlation in coupled cluster theory
,”
J. Chem. Phys.
104
,
6286
6297
(
1996
).
37.
M.
Schütz
,
G.
Hetzer
, and
H.-J.
Werner
, “
Low-order scaling local electron correlation methods. I. Linear scaling local MP2
,”
J. Chem. Phys.
111
,
5691
5705
(
1999
).
38.
M.
Schütz
and
H. J.
Werner
, “
Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD)
,”
J. Chem. Phys.
114
,
661
681
(
2001
).
39.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Sigbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
173
(
1980
).
40.
K.
Ruedenberg
,
M. W.
Schmidt
,
M. M.
Gilbert
, and
S. T.
Elbert
, “
Are atoms intrinsic to molecular electronic wavefunctions? I. The FORS model
,”
Chem. Phys.
71
,
41
49
(
1982
).
41.
P. E. M.
Siegbahn
,
J.
Almlöf
,
A.
Heiberg
, and
B. O.
Roos
, “
The complete active space SCF (CASSCF) method in a Newton-Raphson formulation with application to the HNO molecule
,”
J. Chem. Phys.
74
,
2384
2396
(
1981
).
42.
B. O.
Roos
, “
The complete active space self-consistent field method and its applications in electronic structure calculations
,”
Adv. Chem. Phys.
69
,
399
445
(
1987
).
43.
D. L.
Cooper
,
J.
Gerratt
, and
M.
Raimondi
, “
Spin-coupled valence bond theory
,”
Int. Rev. Phys. Chem.
7
,
59
80
(
1988
).
44.
D. L.
Cooper
,
J.
Gerratt
, and
M.
Raimondi
, “
Applications of spin-coupled valence bond theory
,”
Chem. Rev.
91
,
929
964
(
1991
).
45.
J.
Gerratt
,
D. L.
Cooper
,
P. B.
Karadakov
, and
M.
Raimondi
, “
Modern valence bond theory
,”
Chem. Soc. Rev.
26
,
87
(
1997
).
46.
T. H.
Dunning
,
L. T.
Xu
,
D. L.
Cooper
, and
P. B.
Karadakov
, “
Spin-coupled generalized valence bond theory: New perspectives on the electronic structure of molecules and chemical bonds
,”
J. Phys. Chem. A
125
,
2021
(
2021
).
47.
W. A.
Goddard
,
T. H.
Dunning
,
W. J.
Hunt
, and
P. J.
Hay
, “
Generalized valence bond description of bonding in low-lying states of molecules
,”
Acc. Chem. Res.
6
,
368
376
(
1973
).
48.
J.
Cullen
, “
Generalized valence bond solutions from a constrained coupled cluster method
,”
Chem. Phys.
202
,
217
229
(
1996
).
49.
D. W.
Small
and
M.
Head-Gordon
, “
Tractable spin-pure methods for bond breaking: Local many-electron spin-vector sets and an approximate valence bond model
,”
J. Chem. Phys.
130
,
084103
(
2009
).
50.
D. W.
Small
and
M.
Head-Gordon
, “
Post-modern valence bond theory for strongly correlated electron spins
,”
Phys. Chem. Chem. Phys.
13
,
19285
(
2011
).
51.
D. W.
Small
,
K. V.
Lawler
, and
M.
Head-Gordon
, “
Coupled cluster valence bond method: Efficient computer implementation and application to multiple bond dissociations and strong correlations in the acenes
,”
J. Chem. Theory Comput.
10
,
2027
2040
(
2014
).
52.
S.
Lehtola
,
J.
Parkhill
, and
M.
Head-Gordon
, “
Orbital optimisation in the perfect pairing hierarchy: Applications to full-valence calculations on linear polyacenes
,”
Mol. Phys.
116
,
547
560
(
2018
).
53.
D.
Stück
,
T. A.
Baker
,
P.
Zimmerman
,
W.
Kurlancheek
, and
M.
Head-Gordon
, “
On the nature of electron correlation in C60
,”
J. Chem. Phys.
135
,
194306
(
2011
).
54.
C. U.
Ibeji
and
D.
Ghosh
, “
Singlet-triplet gaps in polyacenes: A delicate balance between dynamic and static correlations investigated by spin-flip methods
,”
Phys. Chem. Chem. Phys.
17
,
9849
9856
(
2015
).
55.
S. F.
Boys
, “
Construction of molecular orbitals to be minimally variant for changes from one molecule to another
,”
Rev. Mod. Phys.
32
,
296
299
(
1960
).
56.
C.
Edmiston
and
K.
Ruedenberg
, “
Localized atomic and molecular orbitals
,”
Rev. Mod. Phys.
35
,
457
464
(
1963
).
57.
J.
Pipek
and
P. G.
Mezey
, “
A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions
,”
J. Chem. Phys.
90
,
4916
4926
(
1989
).
58.
S.
Huzinaga
and
C.
Arnau
, “
Virtual orbitals in Hartree-Fock theory
,”
Phys. Rev. A
1
,
1285
1288
(
1970
).
59.
S.
Huzinaga
and
C.
Arnau
, “
Virtual orbitals in Hartree-Fock theory. II
,”
J. Chem. Phys.
54
,
1948
1951
(
1971
).
60.
C. F.
Bender
and
E. R.
Davidson
, “
Theoretical calculation of the potential curves of the Be2 molecule
,”
J. Chem. Phys.
47
,
4972
4978
(
1967
).
61.
R.
Bonaccorsi
,
C.
Petrongolo
,
E.
Scrocco
, and
J.
Tomasi
, “
Configuration-interaction calculations for the ground state of OF2, NO2, CN: Canonical orbitals and exclusive orbitals
,”
Theor. Chim. Acta
15
,
332
343
(
1969
).
62.
J.
Wasilewski
, “
Modified virtual orbitals (MVO) in limited CI calculations
,”
Int. J. Quantum Chem.
39
,
649
656
(
1991
).
63.
G. J. O.
Beran
,
B.
Austin
,
A.
Sodt
, and
M.
Head-Gordon
, “
Unrestricted perfect pairing: The simplest wave-function-based model chemistry beyond mean field
,”
J. Phys. Chem. A
109
,
9183
9192
(
2005
).
64.
K. V.
Lawler
,
D. W.
Small
, and
M.
Head-Gordon
, “
Orbitals that are unrestricted in active pairs for generalized valence bond coupled cluster methods
,”
J. Phys. Chem. A
114
,
2930
2938
(
2010
).
65.
P.-O.
Löwdin
, “
Correlation problem in many-electron quantum mechanics I. Review of different approaches and discussion of some current ideas
,” in , edited by
I.
Prigogine
(
Wiley
,
1958
), pp.
207
322
.
66.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
622
(
1934
).
67.
M.
Head-Gordon
,
J. A.
Pople
, and
M. J.
Frisch
, “
MP2 energy evaluation by direct methods
,”
Chem. Phys. Lett.
153
,
503
506
(
1988
).
68.
E.
Kapuy
,
Z.
Csépes
, and
C.
Kozmutza
, “
Application of the many-body perturbation theory by using localized orbitals
,”
Int. J. Quantum Chem.
23
,
981
990
(
1983
).
69.
E.
Kapuy
,
F.
Bartha
,
F.
Bogár
,
Z.
Csépes
, and
C.
Kozmutza
, “
Applications of the MBPT in the localized representation
,”
Int. J. Quantum Chem.
38
,
139
147
(
1990
).
70.
A. G.
Taube
and
R. J.
Bartlett
, “
Frozen natural orbitals: Systematic basis set truncation for coupled-cluster theory
,”
Collect. Czech. Chem. Commun.
70
,
837
850
(
2005
).
71.
A. G.
Taube
and
R. J.
Bartlett
, “
Frozen natural orbital coupled-cluster theory: Forces and application to decomposition of nitroethane
,”
J. Chem. Phys.
128
,
164101
(
2008
).
72.
E. A.
Salter
,
G. W.
Trucks
,
G.
Fitzgerald
, and
R. J.
Bartlett
, “
Theory and application of MBPT(3) gradients: The density approach
,”
Chem. Phys. Lett.
141
,
61
70
(
1987
).
73.
G. W.
Trucks
,
E. A.
Salter
,
C.
Sosa
, and
R. J.
Bartlett
, “
Theory and implementation of the MBPT density matrix. An application to one-electron properties
,”
Chem. Phys. Lett.
147
,
359
366
(
1988
).
74.
M. J.
Frisch
,
M.
Head-Gordon
, and
J. A.
Pople
, “
A direct MP2 gradient method
,”
Chem. Phys. Lett.
166
,
275
280
(
1990
).
75.
R. S.
Mulliken
, “
Criteria for the construction of good self-consistent-field molecular orbital wave functions, and the significance of LCAO-MO population analysis
,”
J. Chem. Phys.
36
,
3428
3439
(
1962
).
76.
R. S.
Mulliken
, “
Chemical bonding
,”
Annu. Rev. Phys. Chem.
29
,
1
30
(
1978
).
77.
R. S.
Mulliken
, “
Electronic population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies
,”
J. Chem. Phys.
23
,
1841
1846
(
1955
).
78.
R. S.
Mulliken
, “
Electronic population analysis on LCAO-MO molecular wave functions. I
,”
J. Chem. Phys.
23
,
1833
1840
(
1955
).
79.
E. R.
Davidson
, “
Electronic population analysis of molecular wavefunctions
,”
J. Chem. Phys.
46
,
3320
3324
(
1967
).
80.
K. R.
Roby
, “
Quantum theory of chemical valence concepts. I. Definition of the charge on an atom in a molecule and of occupation numbers for electron density shared between atoms
,”
Mol. Phys.
27
,
81
104
(
1974
).
81.
K.
Ruedenberg
,
M. W.
Schmidt
, and
M. M.
Gilbert
, “
Are atoms intrinsic to molecular electronic wavefunctions? II. Analysis of FORS orbitals
,”
Chem. Phys.
71
,
51
64
(
1982
).
82.
K.
Ruedenberg
,
M. W.
Schmidt
,
M. M.
Gilbert
, and
S. T.
Elbert
, “
Are atoms intrinsic to molecular electronic wavefunctions? III. Analysis of FORS configurations
,”
Chem. Phys.
71
,
65
78
(
1982
).
83.
I.
Mayer
, “
Non-orthogonal localized orbitals and orthogonal atomic hybrids derived from Mulliken’s population analysis
,”
Chem. Phys. Lett.
242
,
499
506
(
1995
).
84.
E.
Epifanovsky
,
A. T. B.
Gilbert
,
X.
Feng
,
J.
Lee
,
Y.
Mao
,
N.
Mardirossian
,
P.
Pokhilko
,
A. F.
White
,
M. P.
Coons
,
A. L.
Dempwolff
 et al., “
Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package
,”
J. Chem. Phys.
155
,
084801
(
2021
).
85.
W.
Liang
,
Y.
Shao
,
C.
Ochsenfeld
,
A. T.
Bell
, and
M.
Head-Gordon
, “
Fast evaluation of a linear number of local exchange matrices
,”
Chem. Phys. Lett.
358
,
43
50
(
2002
).
86.
J. E.
Subotnik
,
Y.
Shao
,
W.
Liang
, and
M.
Head-Gordon
, “
An efficient method for calculating maxima of homogeneous functions of orthogonal matrices: Applications to localized occupied orbitals
,”
J. Chem. Phys.
121
,
9220
9229
(
2004
).
87.
J. E.
Subotnik
,
A.
Sodt
, and
M.
Head-Gordon
, “
Localized orbital theory and ammonia triborane
,”
Phys. Chem. Chem. Phys.
9
,
5522
(
2007
).
88.
J.
Pipek
, “
Localization measure and maximum delocalization in molecular systems
,”
Int. J. Quantum Chem.
36
,
487
501
(
1989
).
89.
I.
Shavitt
,
Methods of Electronic Structure Theory
(
Springer
,
Boston
,
1977
), pp.
189
275
.
90.
P. E. M.
Siegbahn
, “
A new direct CI method for large CI expansions in a small orbital space
,”
Chem. Phys. Lett.
109
,
417
423
(
1984
).
91.
P. J.
Knowles
and
N. C.
Handy
, “
A new determinant-based full configuration interaction method
,”
Chem. Phys. Lett.
111
,
315
321
(
1984
).
92.
B. G.
Levine
,
A. S.
Durden
,
M. P.
Esch
,
F.
Liang
, and
Y.
Shu
, “
CAS without SCF—Why to use CASCI and where to get the orbitals
,”
J. Chem. Phys.
154
,
090902
(
2021
).
93.
T. H.
Dunning
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
90
,
1007
1023
(
1989
).
94.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
95.
T.
Van Voorhis
and
M.
Head-Gordon
, “
Implementation of generalized valence bond-inspired coupled cluster theories
,”
J. Chem. Phys.
117
,
9190
9201
(
2002
).
96.
T.
Van Voorhis
and
M.
Head-Gordon
, “
A geometric approach to direct minimization
,”
Mol. Phys.
100
,
1713
1721
(
2002
).
97.
D.
Hait
and
M.
Head-Gordon
, “
Orbital optimized density functional theory for electronic excited states
,”
J. Phys. Chem. Lett.
12
,
4517
4529
(
2021
).
98.
D.
Hait
and
M.
Head-Gordon
, “
Excited state orbital optimization via minimizing the square of the gradient: General approach and application to singly and doubly excited states via density functional theory
,”
J. Chem. Theory Comput.
16
,
1699
1710
(
2020
).
99.
I.
Frank
,
J.
Hutter
,
D.
Marx
, and
M.
Parrinello
, “
Molecular dynamics in low-spin excited states
,”
J. Chem. Phys.
108
,
4060
4069
(
1998
).
100.
M.
Filatov
and
S.
Shaik
, “
A spin-restricted ensemble-referenced Kohn-Sham method and its application to diradicaloid situations
,”
Chem. Phys. Lett.
304
,
429
437
(
1999
).
101.
M.-T.
Rayez
,
J.-C.
Rayez
, and
J.-P.
Sawerysyn
, “
Ab initio studies of the reactions of chlorine atoms with fluoro- and chloro-substituted methanes
,”
J. Phys. Chem.
98
,
11342
11352
(
1994
).
102.
S. R.
Davis
, “
Ab initio study of the insertion reaction of magnesium into the carbon-halogen bond of fluoro- and chloromethane
,”
J. Am. Chem. Soc.
113
,
4145
4150
(
1991
).
103.
C.
Fonseca Guerra
,
J.-W.
Handgraaf
,
E. J.
Baerends
, and
F. M.
Bickelhaupt
, “
Voronoi deformation density (VDD) charges: Assessment of the Mulliken, Bader, Hirshfeld, Weinhold, and VDD methods for charge analysis
,”
J. Comput. Chem.
25
,
189
210
(
2004
).
104.
S.
Sundin
,
L. J.
Saethre
,
S. L.
Sorensen
,
A.
Ausmees
, and
S.
Svensson
, “
Vibrational structure of the chloromethane series, CH4−nCln, studied by core photoelectron spectroscopy and ab initio calculations
,”
J. Chem. Phys.
110
,
5806
5813
(
1999
).
105.
E.
Kokkonen
,
K.
Jänkälä
,
M.
Patanen
,
W.
Cao
,
M.
Hrast
,
K.
Bučar
,
M.
Žitnik
, and
M.
Huttula
, “
Role of ultrafast dissociation in the fragmentation of chlorinated methanes
,”
J. Chem. Phys.
148
,
174301
(
2018
).
106.
C. M.
Breneman
and
K. B.
Wiberg
, “
Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis
,”
J. Comput. Chem.
11
,
361
373
(
1990
).
107.
F. L.
Hirshfeld
, “
Bonded-atom fragments for describing molecular charge densities
,”
Theor. Chim. Acta
44
,
129
138
(
1977
).
108.
P.
Bultinck
,
C.
Van Alsenoy
,
P. W.
Ayers
, and
R.
Carbó-Dorca
, “
Critical analysis and extension of the Hirshfeld atoms in molecules
,”
J. Chem. Phys.
126
,
144111
(
2007
).
109.
G.
Knizia
, “
Intrinsic atomic orbitals: An unbiased bridge between quantum theory and chemical concepts
,”
J. Chem. Theory Comput.
9
,
4834
4843
(
2013
).
110.
B.
Senjean
,
S.
Sen
,
M.
Repisky
,
G.
Knizia
, and
L.
Visscher
, “
Generalization of intrinsic orbitals to Kramers-paired quaternion spinors, molecular fragments, and valence virtual spinors
,”
J. Chem. Theory Comput.
17
,
1337
1354
(
2021
).
111.
K.
Hashimoto
,
Y.
Osamura
, and
S.
Iwata
, “
Ab initio study of structure and stability of beryllium compounds
,”
J. Mol. Struct.: THEOCHEM
152
,
101
117
(
1987
).
112.
W.
Yu
,
L.
Andrews
, and
X.
Wang
, “
Infrared spectroscopic and electronic structure investigations of beryllium halide molecules, cations, and anions in noble gas matrices
,”
J. Phys. Chem. A
121
,
8843
8855
(
2017
).
113.
C. A.
Coulson
, “
d Electrons and molecular bonding
,”
Nature
221
,
1106
1110
(
1969
).
114.
T.
Kiang
and
R. N.
Zare
, “
Stepwise bond dissociation energies in sulfur hexafluoride
,”
J. Am. Chem. Soc.
102
,
4024
4029
(
1980
).
115.
A. E.
Reed
and
F.
Weinhold
, “
On the role of d orbitals in sulfur hexafluoride
,”
J. Am. Chem. Soc.
108
,
3586
3593
(
1986
).
116.
D. L.
Cooper
,
T. P.
Cunningham
,
J.
Gerratt
,
P. B.
Karadakov
, and
M.
Raimondi
, “
Chemical bonding to hypercoordinate second-row atoms: d orbital participation versus democracy
,”
J. Am. Chem. Soc.
116
,
4414
4426
(
1994
).
117.
A.
Kalemos
, “
Hypervalent bonding in the OF(a4Σ), SF(a4Σ), SF5/SF6, and OSF4 species
,”
J. Phys. Chem. A
122
,
2178
2183
(
2018
).
118.
B. A.
Jackson
,
J.
Harshman
, and
E.
Miliordos
, “
Addressing the hypervalent model: A straightforward explanation of traditionally hypervalent molecules
,”
J. Chem. Educ.
97
,
3638
3646
(
2020
).

Supplementary Material

You do not currently have access to this content.