Lipid peroxides result from a reaction between cis-unsaturated lipid chains and singlet oxygen molecules leading to the addition of a peroxide OOH side group next to the acyl-chain double bond. It is now established that HP-POPC (hydroperoxidized POPC) molecules form stable, thin, and laterally expanded bilayers. The difference in the structural organization arises from the hydrophilic character of the OOH side group that has a strong affinity with the water interface region, leading to significant reorganization of the bilayer. In this article, we describe a coarse-grained (CG) model of POPC and DOPC lipid peroxides within the framework of the Martini CG force-field (v2.2), derived from experimental data. We then discuss extensively the predicted structure and the influence of hydration and show how shifting the position of the unsaturated bonds along the chain changes the structure. Finally, we provide electron and neutron scattering length density profiles of the simulated bilayers.

1.
M.
Repetto
,
J.
Semprine
, and
A.
Boveris
,
Lipid Peroxidation
(
IntechOpen
,
2012
).
2.
K. A.
Riske
,
T. P.
Sudbrack
,
N. L.
Archilha
,
A. F.
Uchoa
,
A. P.
Schroder
,
C. M.
Marques
,
M. S.
Baptista
, and
R.
Itri
,
Biophys. J.
97
,
1362
(
2009
).
3.
I. O. L.
Bacellar
,
M. C.
Oliveira
,
L. S.
Dantas
,
E. B.
Costa
,
H. C.
Junqueira
,
W. K.
Martins
,
A. M.
Durantini
,
G.
Cosa
,
P.
Di Mascio
,
M.
Wainwright
,
R.
Miotto
,
R. M.
Cordeiro
,
S.
Miyamoto
, and
M. S.
Baptista
,
J. Am. Chem. Soc.
140
,
9606
(
2018
).
4.
G.
Weber
,
T.
Charitat
,
M. S.
Baptista
,
A. F.
Uchoa
,
C.
Pavani
,
H. C.
Junqueira
,
Y.
Guo
,
V. A.
Baulin
,
R.
Itri
,
C. M.
Marques
, and
A. P.
Schroder
,
Soft Matter
10
,
4241
(
2014
).
5.
P. H. B.
Aoki
,
A. P.
Schroder
,
C. J. L.
Constantino
, and
C. M.
Marques
,
Soft Matter
11
,
5995
(
2015
).
6.
R. D.
Rosa
,
F.
Spinozzi
, and
R.
Itri
,
Biochim. Biophys. Acta, Biomembr.
1860
,
2299
(
2018
).
7.
G.
Scanavachi
,
A.
Coutinho
,
A. A.
Fedorov
,
M.
Prieto
,
A. M.
Melo
, and
R.
Itri
,
Langmuir
37
,
9952
(
2021
).
8.
O.
Mertins
,
I. O. L.
Bacellar
,
F.
Thalmann
,
C. M.
Marques
,
M. S.
Baptista
, and
R.
Itri
,
Biophys. J.
106
,
162
(
2014
).
9.
Y.
Guo
,
V. A.
Baulin
, and
F.
Thalmann
,
Soft Matter
12
,
263
(
2016
).
10.
C.-F.
Su
,
H.
Merlitz
,
F.
Thalmann
,
C.
Marques
, and
J.-U.
Sommer
,
J. Phys. Chem. C
123
,
6839
(
2019
).
11.
P.
Siani
,
R. M.
de Souza
,
L. G.
Dias
,
R.
Itri
, and
H.
Khandelia
,
Biochim. Biophys. Acta, Biomembr.
1858
,
2498
(
2016
), part of Special Issue: Biosimulations of lipid membranes coupled to experiments.
12.
M.
Orsi
and
J. W.
Essex
,
PLoS One
6
,
e28637
(
2011
).
13.
K.
Gollnick
, in
Advances in Photochemistry
, edited by
W. A. J.
Noyes
,
G. S.
Hammond
, and
J. J.
Pitts
(
Wiley-Interscience
,
1968
), Vol. 6.
14.
M. S.
Baptista
,
J.
Cadet
,
P. D.
Mascio
,
A. A.
Ghogare
,
A.
Greer
,
M. R.
Hamblin
,
C.
Lorente
,
S. C.
Nunez
,
M. S.
Ribeiro
,
A. H.
Thomas
,
M.
Vignoni
, and
T. M.
Yoshimura
,
Photochem. Photobiol.
93
,
912
(
2017
).
15.
S. J.
Marrink
,
A. H.
de Vries
, and
A. E.
Mark
,
J. Phys. Chem. B
108
,
750
(
2004
).
16.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
de Vries
,
J. Phys. Chem. B
111
,
7812
(
2007
).
17.
P. C. T.
Souza
,
R.
Alessandri
,
J.
Barnoud
,
S.
Thallmair
,
I.
Faustino
,
F.
Grünewald
,
I.
Patmanidis
,
H.
Abdizadeh
,
B. M. H.
Bruininks
,
T. A.
Wassenaar
,
P. C.
Kroon
,
J.
Melcr
,
V.
Nieto
,
V.
Corradi
,
H. M.
Khan
,
J.
Domański
,
M.
Javanainen
,
H.
Martinez-Seara
,
N.
Reuter
,
R. B.
Best
,
I.
Vattulainen
,
L.
Monticelli
,
X.
Periole
,
D. P.
Tieleman
,
A. H.
de Vries
, and
S. J.
Marrink
,
Nat. Methods
18
,
382
(
2021
).
18.
J.
Sangster
,
J. Phys. Chem. Ref. Data
18
,
1111
(
1989
).
19.
European CHemical Agency (ECHA), “Tert-butyl hydroperoxide (tbhp) summary risk assessment report,” The value currently quoted by the ECHA is 0.84, https://echa.europa.eu/brief-profile/-/briefprofile/100.000.833.
20.
D.
Marsh
,
Handbook of Lipid Bilayers
, 2nd ed. (
CRC Press
,
Boca Raton
,
2013
).
21.
J.
Seelig
and
W.
Niederberger
,
J. Am. Chem. Soc.
96
,
2069
(
1974
).
22.
T. J.
Piggot
,
J. R.
Allison
,
R. B.
Sessions
, and
J. W.
Essex
,
J. Chem. Theory Comput.
13
,
5683
(
2017
).
23.
W. K.
den Otter
,
J. Chem. Phys.
123
,
214906
(
2005
).
24.
L.
Rems
,
M.
Viano
,
M. A.
Kasimova
,
D.
Miklavčič
, and
M.
Tarek
,
Bioelectrochemistry
125
,
46
(
2019
).
25.
A.
Rohatgi
, Webplotdigitizer: Version 4.5,
2021
.
26.
A.
Koutsioubas
,
J. Phys. Chem. B
120
,
11474
(
2016
).
28.
J.
Wong-Ekkabut
,
Z.
Xu
,
W.
Triampo
,
I.-M.
Tang
,
D. P.
Tieleman
, and
L.
Monticelli
,
Biophys. J.
93
,
4225
(
2007
).
29.
P.
Boonnoy
,
V.
Jarerattanachat
,
M.
Karttunen
, and
J.
Wong-ekkabut
,
J. Phys. Chem. Lett.
6
,
4884
(
2015
).
31.
J.
Van der Paal
,
E. C.
Neyts
,
C. C. W.
Verlackt
, and
A.
Bogaerts
,
Chem. Sci.
7
,
489
(
2016
).
32.
H.
Junqueira
,
A. P.
Schroder
,
F.
Thalmann
,
A.
Klymchenko
,
Y.
Mély
,
M. S.
Baptista
, and
C. M.
Marques
,
Biochim. Biophys. Acta, Biomembr.
1863
,
183659
(
2021
).
33.
C.-P.
Chng
,
Y.
Sadovsky
,
K. J.
Hsia
, and
C.
Huang
,
Extreme Mech. Lett.
42
,
101148
(
2021
).

Supplementary Material

You do not currently have access to this content.