Plasmonic photoelectrochemical (PEC) water splitting has excited immense interest, as it can overcome the intrinsic limitations of semiconductors, in terms of light absorption, by the localized-surface plasmon resonances effect. Here, to get insight into the role of plasmonic hot carriers in plasmonic water splitting, a rational design of an antenna–reactor type Pt/Ag/TiO2 metal–semiconductor Schottky nanodiode was fabricated and used as a photoanode. Using the designed PEC cell system combined with the Pt/Ag/TiO2 nanodiode, we show that the plasmonic hot carriers excited from Ag were utilized for the oxygen (O2) evolution reaction and, consequently, had a decisive role in the enhancement of the photocatalytic efficiency. These results were supported by finite-difference time-domain simulations, and the faradaic efficiency was measured by the amount of actual gas produced. Therefore, this study provides a deep understanding of the dynamics and mechanisms of plasmonic hot carriers in plasmonic-assisted PEC water splitting.

1.
N.
Jiang
,
X.
Zhuo
, and
J.
Wang
,
Chem. Rev.
118
,
3054
(
2018
).
2.
W. A.
Murray
and
W. L.
Barnes
,
Adv. Mater.
19
,
3771
(
2007
).
3.
K. A.
Willets
and
R. P.
Van Duyne
,
Annu. Rev. Phys. Chem.
58
,
267
(
2007
).
4.
S.
Linic
,
P.
Christopher
, and
D. B.
Ingram
,
Nat. Mater.
10
,
911
(
2011
).
5.
S. W.
Lee
,
H.
Lee
,
Y.
Park
,
H.
Kim
,
G. A.
Somorjai
, and
J. Y.
Park
,
Surf. Sci. Rep.
76
,
100532
(
2021
).
6.
7.
M. J.
Kale
and
P.
Christopher
,
Science
349
,
587
(
2015
).
8.
J. B.
Lee
,
S.
Choi
,
J.
Kim
, and
Y. S.
Nam
,
Nano Today
16
,
61
(
2017
).
9.
L.
Mascaretti
,
A.
Dutta
,
Š.
Kment
,
V. M.
Shalaev
,
A.
Boltasseva
,
R.
Zbořil
, and
A.
Naldoni
,
Adv. Mater.
31
,
1805513
(
2019
).
10.
S.
Mubeen
,
J.
Lee
,
N.
Singh
,
S.
Krämer
,
G. D.
Stucky
, and
M.
Moskovits
,
Nat. Nanotechnol.
8
,
247
(
2013
).
12.
E. G.
Karpov
and
I. I.
Nedrygailov
,
Appl. Phys. Lett.
94
,
214101
(
2009
).
13.
Y. K.
Lee
,
H.
Choi
,
H.
Lee
,
C.
Lee
,
J. S.
Choi
,
C.-G.
Choi
,
E.
Hwang
, and
J. Y.
Park
,
Sci. Rep.
6
,
27549
(
2016
).
14.
H.
Nienhaus
,
H. S.
Bergh
,
B.
Gergen
,
A.
Majumdar
,
W. H.
Weinberg
, and
E. W.
McFarland
,
Appl. Phys. Lett.
74
,
4046
(
1999
).
15.
J. Y.
Park
and
G. A.
Somorjai
,
MRS Bull.
45
,
26
(
2020
).
16.
E. W.
McFarland
and
J.
Tang
,
Nature
421
,
616
(
2003
).
17.
Y. K.
Lee
,
J.
Park
, and
J. Y.
Park
,
J. Phys. Chem. C
116
,
18591
(
2012
).
18.
M.
Kang
,
Y.
Park
,
H.
Lee
,
C.
Lee
, and
J. Y.
Park
,
Nanotechnology
32
,
225203
(
2021
).
19.
C.
Lee
,
H.
Choi
,
I. I.
Nedrygailov
,
Y. K.
Lee
,
S.
Jeong
, and
J. Y.
Park
,
ACS Appl. Mater. Interfaces
10
,
5081
(
2018
).
20.
C.
Lee
,
Y. K.
Lee
,
Y.
Park
, and
J. Y.
Park
,
ACS Photonics
5
,
3499
(
2018
).
21.
Y.
Park
,
J.
Choi
,
C.
Lee
,
A.-N.
Cho
,
D. W.
Cho
,
N.-G.
Park
,
H.
Ihee
, and
J. Y.
Park
,
Nano Lett.
19
,
5489
(
2019
).
22.
U.
Aslam
,
V. G.
Rao
,
S.
Chavez
, and
S.
Linic
,
Nat. Catal.
1
,
656
(
2018
).
23.
S.
Linic
,
S.
Chavez
, and
R.
Elias
,
Nat. Mater.
20
,
916
(
2021
).
24.
Z.
Zhang
,
C.
Zhang
,
H.
Zheng
, and
H.
Xu
,
Acc. Chem. Res.
52
,
2506
(
2019
).
25.
U.
Aslam
,
S.
Chavez
, and
S.
Linic
,
Nat. Nanotechnol.
12
,
1000
(
2017
).
26.
U.
Aslam
and
S.
Linic
,
ACS Appl. Mater. Interfaces
9
,
43127
(
2017
).
27.
S.
Chavez
,
U.
Aslam
, and
S.
Linic
,
ACS Energy Lett.
3
,
1590
(
2018
).
28.
H.
Robatjazi
,
J. L.
Bao
,
M.
Zhang
,
L.
Zhou
,
P.
Christopher
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
,
Nat. Catal.
3
,
564
(
2020
).
29.
H.
Robatjazi
,
M.
Lou
,
B. D.
Clark
,
C. R.
Jacobson
,
D. F.
Swearer
,
P.
Nordlander
, and
N. J.
Halas
,
Nano Lett.
20
,
4550
(
2020
).
30.
L.
Zhou
,
D. F.
Swearer
,
C.
Zhang
,
H.
Robatjazi
,
H.
Zhao
,
L.
Henderson
,
L.
Dong
,
P.
Christopher
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
,
Science
362
,
69
(
2018
).
31.
P. D.
Dongare
,
Y.
Zhao
,
D.
Renard
,
J.
Yang
,
O.
Neumann
,
J.
Metz
,
L.
Yuan
,
A.
Alabastri
,
P.
Nordlander
, and
N. J.
Halas
,
ACS Nano
15
,
8761
(
2021
).
32.
D. F.
Swearer
,
H.
Robatjazi
,
J. M. P.
Martirez
,
M.
Zhang
,
L.
Zhou
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
,
ACS Nano
13
,
8076
(
2019
).
33.
C.
Zhang
,
H.
Zhao
,
L.
Zhou
,
A. E.
Schlather
,
L.
Dong
,
M. J.
McClain
,
D. F.
Swearer
,
P.
Nordlander
, and
N. J.
Halas
,
Nano Lett.
16
,
6677
(
2016
).
34.
L.
Zhou
,
J. M. P.
Martirez
,
J.
Finzel
,
C.
Zhang
,
D. F.
Swearer
,
S.
Tian
,
H.
Robatjazi
,
M.
Lou
,
L.
Dong
,
L.
Henderson
,
P.
Christopher
,
E. A.
Carter
,
P.
Nordlander
, and
N. J.
Halas
,
Nat. Energy
5
,
61
(
2020
).
35.
S. M.
Kim
,
S. J.
Lee
,
S. H.
Kim
,
S.
Kwon
,
K. J.
Yee
,
H.
Song
,
G. A.
Somorjai
, and
J. Y.
Park
,
Nano Lett.
13
,
1352
(
2013
).
36.
S. M.
Sze
and
K. K.
Ng
,
Physics of Semiconductor Devices
(
John Wiley & Sons
,
2006
).
37.
S. Y.
Moon
,
H. C.
Song
,
E. H.
Gwag
,
I. I.
Nedrygailov
,
C.
Lee
,
J. J.
Kim
,
W. H.
Doh
, and
J. Y.
Park
,
Nanoscale
10
,
22180
(
2018
).
38.
K.
Song
,
H.
Lee
,
M.
Lee
, and
J. Y.
Park
,
ACS Energy Lett.
6
,
1333
(
2021
).
39.
P.
Varadhan
,
H.-C.
Fu
,
Y.-C.
Kao
,
R.-H.
Horng
, and
J.-H.
He
,
Nat. Commun.
10
,
5282
(
2019
).
40.
J. M.
Yu
,
J.
Lee
,
Y. S.
Kim
,
J.
Song
,
J.
Oh
,
S. M.
Lee
,
M.
Jeong
,
Y.
Kim
,
J. H.
Kwak
,
S.
Cho
,
C.
Yang
, and
J.-W.
Jang
,
Nat. Commun.
11
,
5509
(
2020
).
41.
H.
Lee
,
Y. K.
Lee
,
E.
Hwang
, and
J. Y.
Park
,
J. Phys. Chem. C
118
,
5650
(
2014
).
42.
Y.
Park
,
J.
Choi
,
M.
Kang
,
H.
Lee
,
H.
Ihee
, and
J. Y.
Park
,
J. Phys. Chem. C
125
,
2575
(
2021
).
43.
M.
Bernardi
,
J.
Mustafa
,
J. B.
Neaton
, and
S. G.
Louie
,
Nat. Commun.
6
,
7044
(
2015
).
44.
P.
Narang
,
R.
Sundararaman
, and
H. A.
Atwater
,
Nanophotonics
5
,
96
(
2016
).
45.
Y.
Bao
and
K.
Chen
,
Nano-Micro Lett.
8
,
182
(
2016
).
46.
T. H.
Jeon
,
D.
Monllor–Satoca
,
G. H.
Moon
,
W.
Kim
,
H. I.
Kim
,
D. W.
Bahnemann
,
H.
Park
, and
W.
Choi
,
Nat. Commun.
11
,
967
(
2020
).
47.
M.
Wagstaffe
,
H.
Hussain
,
M. J.
Acres
,
R.
Jones
,
K. L.
Syres
, and
A. G.
Thomas
,
J. Phys. Chem. C
121
,
21383
(
2017
).
48.
I. I.
Nedrygailov
,
C.
Lee
,
S. Y.
Moon
,
H.
Lee
, and
J. Y.
Park
,
Angew. Chem., Int. Ed.
55
,
10859
(
2016
).
49.
B.
Gergen
,
H.
Nienhaus
,
W. H.
Weinberg
, and
E. W.
McFarland
,
Science
294
,
2521
(
2001
).
50.
B.
Gergen
,
S. J.
Weyers
,
H.
Nienhaus
,
W. H.
Weinberg
, and
E. W.
McFarland
,
Surf. Sci.
488
,
123
(
2001
).
51.
H.
Nienhaus
,
H. S.
Bergh
,
B.
Gergen
,
A.
Majumdar
,
W. H.
Weinberg
, and
E. W.
McFarland
,
Phys. Rev. Lett.
82
,
446
(
1999
).
52.
R.
Lazzari
,
S.
Roux
,
I.
Simonsen
,
J.
Jupille
,
D.
Bedeaux
, and
J.
Vlieger
,
Phys. Rev. B
65
,
235424
(
2002
).
53.
J. S.
DuChene
,
G.
Tagliabue
,
A. J.
Welch
,
W.-H.
Cheng
, and
H. A.
Atwater
,
Nano Lett.
18
,
2545
(
2018
).

Supplementary Material

You do not currently have access to this content.