We present an implementation of coupled-perturbed complete active space self-consistent field (CP-CASSCF) theory for the computation of nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals and Cholesky decomposed two-electron integrals. The CP-CASSCF equations are solved using a direct algorithm where the magnetic Hessian matrix–vector product is expressed in terms of one-index transformed quantities. Numerical tests on systems with up to about 1300 basis functions provide information regarding both the computational efficiency and limitations of our implementation.
REFERENCES
1.
M.
Kaupp
, M.
Bühl
, and V. G.
Malkin
, Calculation of NMR and EPR Parameters: Theory and Applications
(Wiley VCH
, Weinheim
, 2004
).2.
J.
Gauss
, “Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts
,” J. Chem. Phys.
99
, 3629
–3643
(1993
).3.
J.
Gauss
, “Accurate calculation of NMR chemical shifts
,” Ber. Bunsenges. Phys. Chem.
99
, 1001
–1008
(1995
).4.
J.
Gauss
and J. F.
Stanton
, “Electron-correlated approaches for the calculation of NMR chemical shifts
,” Adv. Chem. Phys.
123
, 355
–422
(2003
).5.
I.
Shavitt
and R. J.
Bartlett
, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(Cambridge University Press
, 2009
).6.
B. O.
Roos
, P. R.
Taylor
, and P. E. M.
Sigbahn
, “A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,” Chem. Phys.
48
, 157
–173
(1980
).7.
H.-J.
Werner
, “Matrix-formulated direct multiconfiguration self-consistent field and multiconfiguration reference configuration-interaction methods
,” Adv. Chem. Phys.
69
, 1
–62
(1987
).8.
R.
Shepard
, “The multiconfiguration self-consistent field method
,” Adv. Chem. Phys.
69
, 63
–200
(1987
).9.
B. O.
Roos
, “The complete active space self-consistent field method and its applications in electronic structure calculations
,” Adv. Chem. Phys.
69
, 399
–445
(1987
).10.
E.
Dalgaard
, “Time-dependent multiconfigurational Hartree–Fock theory
,” J. Chem. Phys.
72
, 816
–823
(1980
).11.
D. L.
Yeager
and P.
Jørgensen
, “A multiconfigurational time-dependent Hartree-Fock approach
,” Chem. Phys. Lett.
65
, 77
–80
(1979
).12.
J.
Olsen
and P.
Jørgensen
, “Linear and nonlinear response functions for an exact state and for an MCSCF state
,” J. Chem. Phys.
82
, 3235
–3264
(1985
).13.
P.
Jørgensen
, H. J. Aa.
Jensen
, and J.
Olsen
, “Linear response calculations for large scale multiconfiguration self-consistent field wave functions
,” J. Chem. Phys.
89
, 3654
–3661
(1988
).14.
P.
Jørgensen
and J.
Simons
, “Ab initio analytical molecular gradients and Hessians
,” J. Chem. Phys.
79
, 334
–357
(1983
).15.
R. N.
Camp
, H. F.
King
, J. W.
McIver
, Jr., and D.
Mullally
, “Analytical force constants for MCSCF wave functions
,” J. Chem. Phys.
79
, 1088
–1089
(1983
).16.
M. R.
Hoffmann
, D. J.
Fox
, J. F.
Gaw
, Y.
Osamura
, Y.
Yamaguchi
, R. S.
Grev
, G.
Fitzgerald
, H. F.
Schaefer
III, P. J.
Knowles
, and N. C.
Handy
, “Analytic energy second derivatives for general MCSCF wave functions
,” J. Chem. Phys.
80
, 2660
–2668
(1984
).17.
J.
Almlöf
and P. R.
Taylor
, “Molecular properties from perturbation theory: A unified treatment of energy derivatives
,” Int. J. Quantum Chem.
27
, 743
–768
(1985
).18.
N.
Yamamoto
, T.
Vreven
, M. A.
Robb
, M. J.
Frisch
, and H. B.
Schlegel
, “A direct derivative MC-SCF procedure
,” Chem. Phys. Lett.
250
, 373
–378
(1996
).19.
A.
Bernhardsson
, R.
Lindh
, J.
Olsen
, and M.
Fülscher
, “A direct implementation of the second-order derivatives of multiconfigurational SCF energies and an analysis of the preconditioning in the associated response equation
,” Mol. Phys.
96
, 617
–628
(1999
).20.
F.
London
, “Théorie quantique des courants interatomiques dans les combinaisons aromatiques
,” J. Phys. Radium
8
, 397
–409
(1937
).21.
H. F.
Hameka
, “On the nuclear magnetic shielding in the hydrogen molecule
,” Mol. Phys.
1
, 203
–215
(1958
).22.
R.
Ditchfield
, “Molecular orbital theory of magnetic shielding and magnetic susceptibility
,” J. Chem. Phys.
56
, 5688
–5691
(1972
).23.
K.
Wolinski
, J. F.
Hinton
, and P.
Pulay
, “Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations
,” J. Am. Chem. Soc.
112
, 8251
–8260
(1990
).24.
K.
Ruud
, T.
Helgaker
, R.
Kobayashi
, P.
Jørgensen
, K. L.
Bak
, and H. J. Aa.
Jensen
, “Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals
,” J. Chem. Phys.
100
, 8178
–8185
(1994
).25.
K.
Ruud
, T.
Helgaker
, K. L.
Bak
, P.
Jørgensen
, and J.
Olsen
, “Accurate magnetizabilities of the isoelectronic series BeH−, BH, and CH+. The MCSCF-GIAO approach
,” Chem. Phys.
195
, 157
–169
(1995
).26.
K.
Ruud
, T.
Helgaker
, and P.
Jørgensen
, “The effect of correlation on molecular magnetizabilities and rotational g tensors
,” J. Chem. Phys.
107
, 10599
–10606
(1997
).27.
C.
van Wüllen
and W.
Kutzelnigg
, “The MC-IGLO method
,” Chem. Phys. Lett.
205
, 563
–571
(1993
).28.
T. J.
Dudley
, R. M.
Olson
, M. W.
Schmidt
, and M. S.
Gordon
, “Parallel coupled perturbed CASSCF equations and analytic CASSCF second derivatives
,” J. Comput. Chem.
27
, 352
–362
(2006
).29.
J. W.
Snyder
, Jr., E. G.
Hohenstein
, N.
Luehr
, and T. J.
Martínez
, “An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units
,” J. Chem. Phys.
143
, 154107
(2015
).30.
E. G.
Hohenstein
,, M. E. F.
Bouduban
, C.
Song
, N.
Luehr
, I. S.
Ufimtsev
, and T. J.
Martinez
, “Analytic first derivatives of floating occupation molecular orbital-complete active space configuration interaction on graphical processing units
,” J. Chem. Phys.
143
, 014111
(2015
).31.
J. W.
Snyder
, Jr., B. S.
Fales
, E. G.
Hohenstein
, B. G.
Levine
, and T. J.
Martínez
, “A direct-compatible formulation of the coupled perturbed complete active space self-consistent field equations on graphical processing units
,” J. Chem. Phys.
146
, 174113
(2017
).32.
B.
Helmich-Paris
, “CASSCF linear response calculations for large open-shell molecules
,” J. Chem. Phys.
150
, 174121
(2019
).33.
J. L.
Whitten
, “Coulombic potential energy integrals and approximations
,” J. Chem. Phys.
58
, 4496
–4501
(1973
).34.
O.
Vahtras
, J.
Almlöf
, and M. W.
Feyereisen
, “Integral approximations for LCAO-SCF calculations
,” Chem. Phys. Lett.
213
, 514
–518
(1993
).35.
F.
Neese
, “An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix
,” J. Comput. Chem.
24
, 1740
–1747
(2003
).36.
F.
Neese
, F.
Wennmohs
, A.
Hansen
, and U.
Becker
, “Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. a ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange
,” Chem. Phys.
356
, 98
–109
(2009
).37.
R.
Izsák
and F.
Neese
, “An overlap fitted chain of spheres exchange method
,” J. Chem. Phys.
135
, 144105
(2011
).38.
N. H. F.
Beebe
and J.
Linderberg
, “Simplifications in the generation and transformation of two-electron integrals in molecular calculations
,” Int. J. Quantum Chem.
12
, 683
–705
(1977
).39.
H.
Koch
, A.
Sánchez de Merás
, and T. B.
Pedersen
, “Reduced scaling in electronic structure calculations using Cholesky decompositions
,” J. Chem. Phys.
118
, 9481
–9484
(2003
).40.
U.
Bozkaya
, “Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: An efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory
,” J. Chem. Phys.
141
, 124108
(2014
).41.
F.
Aquilante
, T. B.
Pedersen
, R.
Lindh
, B. O.
Roos
, A.
Sánchez de Merás
, and H.
Koch
, “Accurate ab initio density fitting for multiconfigurational self-consistent field methods
,” J. Chem. Phys.
129
, 024113
(2008
).42.
U.
Bozkaya
, “Orbital-optimized MP3 and MP2.5 with density-fitting and Cholesky decomposition approximations
,” J. Chem. Theory Comput.
12
, 1179
–1188
(2016
).43.
S.
Blaschke
and S.
Stopkowicz
, “Cholesky decomposition of complex two-electron integrals over GIAOs: Efficient MP2 computations for large molecules in strong magnetic fields
,” J. Chem. Phys.
156
, 044115
(2022
).44.
J.
Boström
, V.
Veryazov
, F.
Aquilante
, T.
Bondo Pedersen
, and R.
Lindh
, “Analytical gradients of the second-order Møller–Plesset energy using Cholesky decompositions
,” Int. J. Quantum Chem.
114
, 321
–327
(2014
).45.
M. G.
Delcey
, L.
Freitag
, T. B.
Pedersen
, F.
Aquilante
, R.
Lindh
, and L.
González
, “Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: Geometry optimization and spin-state energetics of a ruthenium nitrosyl complex
,” J. Chem. Phys.
140
, 174103
(2014
).46.
X.
Feng
, E.
Epifanovsky
, J.
Gauss
, and A. I.
Krylov
, “Implementation of analytic gradients for CCSD and EOM-CCSD using Cholesky decomposition of the electron-repulsion integrals and their derivatives: Theory and benchmarks
,” J. Chem. Phys.
151
, 014110
(2019
).47.
A. K.
Schnack-Petersen
, H.
Koch
, S.
Coriani
, and E. F.
Kjønstad
, “Efficient implementation of molecular CCSD gradients with Cholesky-decomposed electron repulsion integrals
,” J. Chem. Phys.
156
, 244111
(2022
).48.
S.
Burger
, F.
Lipparini
, J.
Gauss
, and S.
Stopkowicz
, “NMR chemical shift computations at second-order Møller–Plesset perturbation theory using gauge-including atomic orbitals and Cholesky-decomposed two-electron integrals
,” J. Chem. Phys.
155
, 074105
(2021
).49.
D. A.
Matthews
, L.
Cheng
, M. E.
Harding
, F.
Lipparini
, S.
Stopkowicz
, T.-C.
Jagau
, P. G.
Szalay
, J.
Gauss
, and J. F.
Stanton
, “Coupled-cluster techniques for computational chemistry: The CFOUR program package
,” J. Chem. Phys.
152
, 214108
(2020
).50.
J. F.
Stanton
, J.
Gauss
, L.
Cheng
, M. E.
Harding
, D. A.
Matthews
, and P. G.
Szalay
, “CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package
,” With contributions from A.
Asthana
, A. A.
Auer
, R. J.
Bartlett
, U.
Benedikt
, C.
Berger
, D. E.
Bernholdt
, S.
Blaschke
, Y. J.
Bomble
, S.
Burger
, O.
Christiansen
, D.
Datta
, F.
Engel
, R.
Faber
, J.
Greiner
, M.
Heckert
, O.
Heun
, M.
Hilgenberg
, C.
Huber
, T.-C.
Jagau
, D.
Jonsson
, J.
Jusélius
, T.
Kirsch
, M.-P.
Kitsaras
, K.
Klein
, G. M.
Kopper
, W. J.
Lauderdale
, F.
Lipparini
, T.
Metzroth
, L. A.
Mück
, D. P.
O’Neill
, T.
Nottoli
, J.
Oswald
, D. R.
Price
, E.
Prochnow
, C.
Puzzarini
, K.
Ruud
, F.
Schiffmann
, W.
Schwalbach
, C.
Simmons
, S.
Stopkowicz
, A.
Tajti
, J.
Vázquez
, F.
Wang
, J. D.
Watts
, C.
Zhang
, X.
Zheng
, and the integral packages MOLECULE (J.
Almlöf
and P. R.
Taylor
), PROPS (P. R.
Taylor
), ABACUS (T.
Helgaker
, H. J. A.
Jensen
, P.
Jørgensen
, and J.
Olsen
), and ECP routines by A. V.
Mitin
and C.
van Wüllen
. For the current version, see http://www.cfour.de.51.
F.
Lipparini
and J.
Gauss
, “Cost-effective treatment of scalar relativistic effects for multireference systems: A CASSCF implementation based on the spin-free Dirac–Coulomb Hamiltonian
,” J. Chem. Theory Comput.
12
, 4284
–4295
(2016
).52.
T.
Nottoli
, J.
Gauss
, and F.
Lipparini
, “Second-order CASSCF algorithm with the Cholesky decomposition of the two-electron integrals
,” J. Chem. Theory Comput.
17
, 6819
–6831
(2021
).53.
T.
Helgaker
and P.
Jørgensen
, “An electronic Hamiltonian for origin independent calculations of magnetic properties
,” J. Chem. Phys.
95
, 2595
–2601
(1991
).54.
T. U.
Helgaker
and J.
Almlöf
, “A second-quantization approach to the analytical evaluation of response properties for perturbation-dependent basis sets
,” Int. J. Quantum Chem.
26
, 275
–291
(1984
).55.
J.
Simons
, P.
Jørgensen
, and T. U.
Helgaker
, “Higher molecular-deformation derivatives of the configuration-interaction energy
,” Chem. Phys.
86
, 413
–432
(1984
).56.
J.
Olsen
, K. L.
Bak
, K.
Ruud
, T.
Helgaker
, and P.
Jørgensen
, “Orbital connections for perturbation-dependent basis sets
,” Theor. Chim. Acta
90
, 421
–439
(1995
).57.
K.
Ruud
, T.
Helgaker
, J.
Olsen
, P.
Jørgensen
, and K. L.
Bak
, “A numerically stable orbital connection for the calculation of analytical Hessians using perturbation-dependent basis sets
,” Chem. Phys. Lett.
235
, 47
–52
(1995
).58.
H. J. Aa.
Jensen
and H.
Ågren
, “A direct, restricted-step, second-order MC SCF program for large scale ab initio calculations
,” Chem. Phys.
104
, 229
–250
(1986
).59.
F.
Aquilante
, L.
Boman
, J.
Boström
, H.
Koch
, R.
Lindh
, A. S.
de Merás
, and T. B.
Pedersen
, “Cholesky decomposition techniques in electronic structure theory
,” in Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications
, edited by R.
Zalesny
, M. G.
Papadopoulos
, P. G.
Mezey
, and J.
Leszczynski
(Springer Netherlands
, Dordrecht
, 2011
), pp. 301
–343
.60.
S. D.
Folkestad
, E. F.
Kjønstad
, and H.
Koch
, “An efficient algorithm for Cholesky decomposition of electron repulsion integrals
,” J. Chem. Phys.
150
, 194112
(2019
).61.
T.
Zhang
, X.
Liu
, E. F.
Valeev
, and X.
Li
, “Toward the minimal floating operation count Cholesky decomposition of electron repulsion integrals
,” J. Phys. Chem. A
125
, 4258
–4265
(2021
).62.
J.
Gauss
, F.
Lipparini
, S.
Burger
, S.
Blaschke
, M.-P.
Kitsaras
, and S.
Stopkowicz
, The Mainz INTegral package MINT
(Johannes Gutenberg-Universität Mainz
, 2021
).63.
J.
Gauss
, S.
Blaschke
, S.
Burger
, T.
Nottoli
, F.
Lipparini
, and S.
Stopkowicz
, “Cholesky decomposition of two-electron integrals in quantum-chemical calculations with perturbative or finite magnetic fields using gauge-including atomic orbitals
,” Mol. Phys.
120
, e2101562
(2022
).64.
P.
Pulay
and T. P.
Hamilton
, “UHF natural orbitals for defining and starting MC-SCF calculations
,” J. Chem. Phys.
88
, 4926
–4933
(1988
).65.
Z.
Tóth
and P.
Pulay
, “Comparison of methods for active orbital selection in multiconfigurational calculations
,” J. Chem. Theory Comput.
16
, 7328
–7341
(2020
).66.
T. H.
Dunning
, Jr., “Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,” J. Chem. Phys.
1007
, 4572
–4585
(1989
).67.
W. J.
Hehre
, R.
Ditchfield
, and J. A.
Pople
, “Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules
,” J. Chem. Phys.
56
, 2257
–2261
(1972
).68.
A. D.
Becke
, “A new mixing of Hartree–Fock and local density-functional theories
,” J. Chem. Phys.
98
, 1372
–1377
(1993
).69.
M. J.
Frisch
, G. W.
Trucks
, H. B.
Schlegel
, G. E.
Scuseria
, M. A.
Robb
, J. R.
Cheeseman
, G.
Scalmani
, V.
Barone
, G. A.
Petersson
, H.
Nakatsuji
, X.
Li
, M.
Caricato
, A. V.
Marenich
, J.
Bloino
, B. G.
Janesko
, R.
Gomperts
, B.
Mennucci
, H. P.
Hratchian
, J. V.
Ortiz
, A. F.
Izmaylov
, J. L.
Sonnenberg
, D.
Williams-Young
, F.
Ding
, F.
Lipparini
, F.
Egidi
, J.
Goings
, B.
Peng
, A.
Petrone
, T.
Henderson
, D.
Ranasinghe
, V. G.
Zakrzewski
, J.
Gao
, N.
Rega
, G.
Zheng
, W.
Liang
, M.
Hada
, M.
Ehara
, K.
Toyota
, R.
Fukuda
, J.
Hasegawa
, M.
Ishida
, T.
Nakajima
, Y.
Honda
, O.
Kitao
, H.
Nakai
, T.
Vreven
, K.
Throssell
, J. A.
Montgomery
, Jr., J. E.
Peralta
, F.
Ogliaro
, M. J.
Bearpark
, J. J.
Heyd
, E. N.
Brothers
, K. N.
Kudin
, V. N.
Staroverov
, T. A.
Keith
, R.
Kobayashi
, J.
Normand
, K.
Raghavachari
, A. P.
Rendell
, J. C.
Burant
, S. S.
Iyengar
, J.
Tomasi
, M.
Cossi
, J. M.
Millam
, M.
Klene
, C.
Adamo
, R.
Cammi
, J. W.
Ochterski
, R. L.
Martin
, K.
Morokuma
, O.
Farkas
, J. B.
Foresman
, and D. J.
Fox
, Gaussian 16 Revision A.03 (Gaussian Inc.
, Wallingford CT
, 2016
).70.
H. J. A.
Jensen
and P.
Jørgensen
, “A direct approach to second-order MCSCF calculations using a norm extended optimization scheme
,” J. Chem. Phys.
80
, 1204
–1214
(1984
).71.
E. R.
Sayfutyarova
, Q.
Sun
, G. K.-L.
Chan
, and G.
Knizia
, “Automated construction of molecular active spaces from atomic valence orbitals
,” J. Chem. Theory Comput.
13
, 4063
–4078
(2017
).72.
C. J.
Stein
and M.
Reiher
, “Automated selection of active orbital spaces
,” J. Chem. Theory Comput.
12
, 1760
–1771
(2016
).73.
E. R.
Sayfutyarova
and S.
Hammes-Schiffer
, “Constructing molecular π-orbital active spaces for multireference calculations of conjugated systems
,” J. Chem. Theory Comput.
15
, 1679
–1689
(2019
).© 2022 Author(s). Published under an exclusive license by AIP Publishing.
2022
Author(s)
You do not currently have access to this content.