We present an implementation of coupled-perturbed complete active space self-consistent field (CP-CASSCF) theory for the computation of nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals and Cholesky decomposed two-electron integrals. The CP-CASSCF equations are solved using a direct algorithm where the magnetic Hessian matrix–vector product is expressed in terms of one-index transformed quantities. Numerical tests on systems with up to about 1300 basis functions provide information regarding both the computational efficiency and limitations of our implementation.

1.
M.
Kaupp
,
M.
Bühl
, and
V. G.
Malkin
,
Calculation of NMR and EPR Parameters: Theory and Applications
(
Wiley VCH
,
Weinheim
,
2004
).
2.
J.
Gauss
, “
Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts
,”
J. Chem. Phys.
99
,
3629
3643
(
1993
).
3.
J.
Gauss
, “
Accurate calculation of NMR chemical shifts
,”
Ber. Bunsenges. Phys. Chem.
99
,
1001
1008
(
1995
).
4.
J.
Gauss
and
J. F.
Stanton
, “
Electron-correlated approaches for the calculation of NMR chemical shifts
,”
Adv. Chem. Phys.
123
,
355
422
(
2003
).
5.
I.
Shavitt
and
R. J.
Bartlett
,
Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory
(
Cambridge University Press
,
2009
).
6.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Sigbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
173
(
1980
).
7.
H.-J.
Werner
, “
Matrix-formulated direct multiconfiguration self-consistent field and multiconfiguration reference configuration-interaction methods
,”
Adv. Chem. Phys.
69
,
1
62
(
1987
).
8.
R.
Shepard
, “
The multiconfiguration self-consistent field method
,”
Adv. Chem. Phys.
69
,
63
200
(
1987
).
9.
B. O.
Roos
, “
The complete active space self-consistent field method and its applications in electronic structure calculations
,”
Adv. Chem. Phys.
69
,
399
445
(
1987
).
10.
E.
Dalgaard
, “
Time-dependent multiconfigurational Hartree–Fock theory
,”
J. Chem. Phys.
72
,
816
823
(
1980
).
11.
D. L.
Yeager
and
P.
Jørgensen
, “
A multiconfigurational time-dependent Hartree-Fock approach
,”
Chem. Phys. Lett.
65
,
77
80
(
1979
).
12.
J.
Olsen
and
P.
Jørgensen
, “
Linear and nonlinear response functions for an exact state and for an MCSCF state
,”
J. Chem. Phys.
82
,
3235
3264
(
1985
).
13.
P.
Jørgensen
,
H. J. Aa.
Jensen
, and
J.
Olsen
, “
Linear response calculations for large scale multiconfiguration self-consistent field wave functions
,”
J. Chem. Phys.
89
,
3654
3661
(
1988
).
14.
P.
Jørgensen
and
J.
Simons
, “
Ab initio analytical molecular gradients and Hessians
,”
J. Chem. Phys.
79
,
334
357
(
1983
).
15.
R. N.
Camp
,
H. F.
King
,
J. W.
McIver
, Jr.
, and
D.
Mullally
, “
Analytical force constants for MCSCF wave functions
,”
J. Chem. Phys.
79
,
1088
1089
(
1983
).
16.
M. R.
Hoffmann
,
D. J.
Fox
,
J. F.
Gaw
,
Y.
Osamura
,
Y.
Yamaguchi
,
R. S.
Grev
,
G.
Fitzgerald
,
H. F.
Schaefer
 III
,
P. J.
Knowles
, and
N. C.
Handy
, “
Analytic energy second derivatives for general MCSCF wave functions
,”
J. Chem. Phys.
80
,
2660
2668
(
1984
).
17.
J.
Almlöf
and
P. R.
Taylor
, “
Molecular properties from perturbation theory: A unified treatment of energy derivatives
,”
Int. J. Quantum Chem.
27
,
743
768
(
1985
).
18.
N.
Yamamoto
,
T.
Vreven
,
M. A.
Robb
,
M. J.
Frisch
, and
H. B.
Schlegel
, “
A direct derivative MC-SCF procedure
,”
Chem. Phys. Lett.
250
,
373
378
(
1996
).
19.
A.
Bernhardsson
,
R.
Lindh
,
J.
Olsen
, and
M.
Fülscher
, “
A direct implementation of the second-order derivatives of multiconfigurational SCF energies and an analysis of the preconditioning in the associated response equation
,”
Mol. Phys.
96
,
617
628
(
1999
).
20.
F.
London
, “
Théorie quantique des courants interatomiques dans les combinaisons aromatiques
,”
J. Phys. Radium
8
,
397
409
(
1937
).
21.
H. F.
Hameka
, “
On the nuclear magnetic shielding in the hydrogen molecule
,”
Mol. Phys.
1
,
203
215
(
1958
).
22.
R.
Ditchfield
, “
Molecular orbital theory of magnetic shielding and magnetic susceptibility
,”
J. Chem. Phys.
56
,
5688
5691
(
1972
).
23.
K.
Wolinski
,
J. F.
Hinton
, and
P.
Pulay
, “
Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations
,”
J. Am. Chem. Soc.
112
,
8251
8260
(
1990
).
24.
K.
Ruud
,
T.
Helgaker
,
R.
Kobayashi
,
P.
Jørgensen
,
K. L.
Bak
, and
H. J. Aa.
Jensen
, “
Multiconfigurational self-consistent field calculations of nuclear shieldings using London atomic orbitals
,”
J. Chem. Phys.
100
,
8178
8185
(
1994
).
25.
K.
Ruud
,
T.
Helgaker
,
K. L.
Bak
,
P.
Jørgensen
, and
J.
Olsen
, “
Accurate magnetizabilities of the isoelectronic series BeH, BH, and CH+. The MCSCF-GIAO approach
,”
Chem. Phys.
195
,
157
169
(
1995
).
26.
K.
Ruud
,
T.
Helgaker
, and
P.
Jørgensen
, “
The effect of correlation on molecular magnetizabilities and rotational g tensors
,”
J. Chem. Phys.
107
,
10599
10606
(
1997
).
27.
C.
van Wüllen
and
W.
Kutzelnigg
, “
The MC-IGLO method
,”
Chem. Phys. Lett.
205
,
563
571
(
1993
).
28.
T. J.
Dudley
,
R. M.
Olson
,
M. W.
Schmidt
, and
M. S.
Gordon
, “
Parallel coupled perturbed CASSCF equations and analytic CASSCF second derivatives
,”
J. Comput. Chem.
27
,
352
362
(
2006
).
29.
J. W.
Snyder
, Jr.
,
E. G.
Hohenstein
,
N.
Luehr
, and
T. J.
Martínez
, “
An atomic orbital-based formulation of analytical gradients and nonadiabatic coupling vector elements for the state-averaged complete active space self-consistent field method on graphical processing units
,”
J. Chem. Phys.
143
,
154107
(
2015
).
30.
E. G.
Hohenstein
,
,
M. E. F.
Bouduban
,
C.
Song
,
N.
Luehr
,
I. S.
Ufimtsev
, and
T. J.
Martinez
, “
Analytic first derivatives of floating occupation molecular orbital-complete active space configuration interaction on graphical processing units
,”
J. Chem. Phys.
143
,
014111
(
2015
).
31.
J. W.
Snyder
, Jr.
,
B. S.
Fales
,
E. G.
Hohenstein
,
B. G.
Levine
, and
T. J.
Martínez
, “
A direct-compatible formulation of the coupled perturbed complete active space self-consistent field equations on graphical processing units
,”
J. Chem. Phys.
146
,
174113
(
2017
).
32.
B.
Helmich-Paris
, “
CASSCF linear response calculations for large open-shell molecules
,”
J. Chem. Phys.
150
,
174121
(
2019
).
33.
J. L.
Whitten
, “
Coulombic potential energy integrals and approximations
,”
J. Chem. Phys.
58
,
4496
4501
(
1973
).
34.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
, “
Integral approximations for LCAO-SCF calculations
,”
Chem. Phys. Lett.
213
,
514
518
(
1993
).
35.
F.
Neese
, “
An improvement of the resolution of the identity approximation for the formation of the Coulomb matrix
,”
J. Comput. Chem.
24
,
1740
1747
(
2003
).
36.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
, “
Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. a ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange
,”
Chem. Phys.
356
,
98
109
(
2009
).
37.
R.
Izsák
and
F.
Neese
, “
An overlap fitted chain of spheres exchange method
,”
J. Chem. Phys.
135
,
144105
(
2011
).
38.
N. H. F.
Beebe
and
J.
Linderberg
, “
Simplifications in the generation and transformation of two-electron integrals in molecular calculations
,”
Int. J. Quantum Chem.
12
,
683
705
(
1977
).
39.
H.
Koch
,
A.
Sánchez de Merás
, and
T. B.
Pedersen
, “
Reduced scaling in electronic structure calculations using Cholesky decompositions
,”
J. Chem. Phys.
118
,
9481
9484
(
2003
).
40.
U.
Bozkaya
, “
Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: An efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory
,”
J. Chem. Phys.
141
,
124108
(
2014
).
41.
F.
Aquilante
,
T. B.
Pedersen
,
R.
Lindh
,
B. O.
Roos
,
A.
Sánchez de Merás
, and
H.
Koch
, “
Accurate ab initio density fitting for multiconfigurational self-consistent field methods
,”
J. Chem. Phys.
129
,
024113
(
2008
).
42.
U.
Bozkaya
, “
Orbital-optimized MP3 and MP2.5 with density-fitting and Cholesky decomposition approximations
,”
J. Chem. Theory Comput.
12
,
1179
1188
(
2016
).
43.
S.
Blaschke
and
S.
Stopkowicz
, “
Cholesky decomposition of complex two-electron integrals over GIAOs: Efficient MP2 computations for large molecules in strong magnetic fields
,”
J. Chem. Phys.
156
,
044115
(
2022
).
44.
J.
Boström
,
V.
Veryazov
,
F.
Aquilante
,
T.
Bondo Pedersen
, and
R.
Lindh
, “
Analytical gradients of the second-order Møller–Plesset energy using Cholesky decompositions
,”
Int. J. Quantum Chem.
114
,
321
327
(
2014
).
45.
M. G.
Delcey
,
L.
Freitag
,
T. B.
Pedersen
,
F.
Aquilante
,
R.
Lindh
, and
L.
González
, “
Analytical gradients of complete active space self-consistent field energies using Cholesky decomposition: Geometry optimization and spin-state energetics of a ruthenium nitrosyl complex
,”
J. Chem. Phys.
140
,
174103
(
2014
).
46.
X.
Feng
,
E.
Epifanovsky
,
J.
Gauss
, and
A. I.
Krylov
, “
Implementation of analytic gradients for CCSD and EOM-CCSD using Cholesky decomposition of the electron-repulsion integrals and their derivatives: Theory and benchmarks
,”
J. Chem. Phys.
151
,
014110
(
2019
).
47.
A. K.
Schnack-Petersen
,
H.
Koch
,
S.
Coriani
, and
E. F.
Kjønstad
, “
Efficient implementation of molecular CCSD gradients with Cholesky-decomposed electron repulsion integrals
,”
J. Chem. Phys.
156
,
244111
(
2022
).
48.
S.
Burger
,
F.
Lipparini
,
J.
Gauss
, and
S.
Stopkowicz
, “
NMR chemical shift computations at second-order Møller–Plesset perturbation theory using gauge-including atomic orbitals and Cholesky-decomposed two-electron integrals
,”
J. Chem. Phys.
155
,
074105
(
2021
).
49.
D. A.
Matthews
,
L.
Cheng
,
M. E.
Harding
,
F.
Lipparini
,
S.
Stopkowicz
,
T.-C.
Jagau
,
P. G.
Szalay
,
J.
Gauss
, and
J. F.
Stanton
, “
Coupled-cluster techniques for computational chemistry: The CFOUR program package
,”
J. Chem. Phys.
152
,
214108
(
2020
).
50.
J. F.
Stanton
,
J.
Gauss
,
L.
Cheng
,
M. E.
Harding
,
D. A.
Matthews
, and
P. G.
Szalay
, “
CFOUR, Coupled-Cluster techniques for Computational Chemistry, a quantum-chemical program package
,” With contributions from
A.
Asthana
,
A. A.
Auer
,
R. J.
Bartlett
,
U.
Benedikt
,
C.
Berger
,
D. E.
Bernholdt
,
S.
Blaschke
,
Y. J.
Bomble
,
S.
Burger
,
O.
Christiansen
,
D.
Datta
,
F.
Engel
,
R.
Faber
,
J.
Greiner
,
M.
Heckert
,
O.
Heun
,
M.
Hilgenberg
,
C.
Huber
,
T.-C.
Jagau
,
D.
Jonsson
,
J.
Jusélius
,
T.
Kirsch
,
M.-P.
Kitsaras
,
K.
Klein
,
G. M.
Kopper
,
W. J.
Lauderdale
,
F.
Lipparini
,
T.
Metzroth
,
L. A.
Mück
,
D. P.
O’Neill
,
T.
Nottoli
,
J.
Oswald
,
D. R.
Price
,
E.
Prochnow
,
C.
Puzzarini
,
K.
Ruud
,
F.
Schiffmann
,
W.
Schwalbach
,
C.
Simmons
,
S.
Stopkowicz
,
A.
Tajti
,
J.
Vázquez
,
F.
Wang
,
J. D.
Watts
,
C.
Zhang
,
X.
Zheng
, and the integral packages MOLECULE (
J.
Almlöf
and
P. R.
Taylor
), PROPS (
P. R.
Taylor
), ABACUS (
T.
Helgaker
,
H. J. A.
Jensen
,
P.
Jørgensen
, and
J.
Olsen
), and ECP routines by
A. V.
Mitin
and
C.
van Wüllen
. For the current version, see http://www.cfour.de.
51.
F.
Lipparini
and
J.
Gauss
, “
Cost-effective treatment of scalar relativistic effects for multireference systems: A CASSCF implementation based on the spin-free Dirac–Coulomb Hamiltonian
,”
J. Chem. Theory Comput.
12
,
4284
4295
(
2016
).
52.
T.
Nottoli
,
J.
Gauss
, and
F.
Lipparini
, “
Second-order CASSCF algorithm with the Cholesky decomposition of the two-electron integrals
,”
J. Chem. Theory Comput.
17
,
6819
6831
(
2021
).
53.
T.
Helgaker
and
P.
Jørgensen
, “
An electronic Hamiltonian for origin independent calculations of magnetic properties
,”
J. Chem. Phys.
95
,
2595
2601
(
1991
).
54.
T. U.
Helgaker
and
J.
Almlöf
, “
A second-quantization approach to the analytical evaluation of response properties for perturbation-dependent basis sets
,”
Int. J. Quantum Chem.
26
,
275
291
(
1984
).
55.
J.
Simons
,
P.
Jørgensen
, and
T. U.
Helgaker
, “
Higher molecular-deformation derivatives of the configuration-interaction energy
,”
Chem. Phys.
86
,
413
432
(
1984
).
56.
J.
Olsen
,
K. L.
Bak
,
K.
Ruud
,
T.
Helgaker
, and
P.
Jørgensen
, “
Orbital connections for perturbation-dependent basis sets
,”
Theor. Chim. Acta
90
,
421
439
(
1995
).
57.
K.
Ruud
,
T.
Helgaker
,
J.
Olsen
,
P.
Jørgensen
, and
K. L.
Bak
, “
A numerically stable orbital connection for the calculation of analytical Hessians using perturbation-dependent basis sets
,”
Chem. Phys. Lett.
235
,
47
52
(
1995
).
58.
H. J. Aa.
Jensen
and
H.
Ågren
, “
A direct, restricted-step, second-order MC SCF program for large scale ab initio calculations
,”
Chem. Phys.
104
,
229
250
(
1986
).
59.
F.
Aquilante
,
L.
Boman
,
J.
Boström
,
H.
Koch
,
R.
Lindh
,
A. S.
de Merás
, and
T. B.
Pedersen
, “
Cholesky decomposition techniques in electronic structure theory
,” in
Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications
, edited by
R.
Zalesny
,
M. G.
Papadopoulos
,
P. G.
Mezey
, and
J.
Leszczynski
(
Springer Netherlands
,
Dordrecht
,
2011
), pp.
301
343
.
60.
S. D.
Folkestad
,
E. F.
Kjønstad
, and
H.
Koch
, “
An efficient algorithm for Cholesky decomposition of electron repulsion integrals
,”
J. Chem. Phys.
150
,
194112
(
2019
).
61.
T.
Zhang
,
X.
Liu
,
E. F.
Valeev
, and
X.
Li
, “
Toward the minimal floating operation count Cholesky decomposition of electron repulsion integrals
,”
J. Phys. Chem. A
125
,
4258
4265
(
2021
).
62.
J.
Gauss
,
F.
Lipparini
,
S.
Burger
,
S.
Blaschke
,
M.-P.
Kitsaras
, and
S.
Stopkowicz
,
The Mainz INTegral package MINT
(
Johannes Gutenberg-Universität Mainz
,
2021
).
63.
J.
Gauss
,
S.
Blaschke
,
S.
Burger
,
T.
Nottoli
,
F.
Lipparini
, and
S.
Stopkowicz
, “
Cholesky decomposition of two-electron integrals in quantum-chemical calculations with perturbative or finite magnetic fields using gauge-including atomic orbitals
,”
Mol. Phys.
120
,
e2101562
(
2022
).
64.
P.
Pulay
and
T. P.
Hamilton
, “
UHF natural orbitals for defining and starting MC-SCF calculations
,”
J. Chem. Phys.
88
,
4926
4933
(
1988
).
65.
Z.
Tóth
and
P.
Pulay
, “
Comparison of methods for active orbital selection in multiconfigurational calculations
,”
J. Chem. Theory Comput.
16
,
7328
7341
(
2020
).
66.
T. H.
Dunning
, Jr.
, “
Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen
,”
J. Chem. Phys.
1007
,
4572
4585
(
1989
).
67.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
, “
Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules
,”
J. Chem. Phys.
56
,
2257
2261
(
1972
).
68.
A. D.
Becke
, “
A new mixing of Hartree–Fock and local density-functional theories
,”
J. Chem. Phys.
98
,
1372
1377
(
1993
).
69.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, Gaussian 16 Revision A.03 (
Gaussian Inc.
,
Wallingford CT
,
2016
).
70.
H. J. A.
Jensen
and
P.
Jørgensen
, “
A direct approach to second-order MCSCF calculations using a norm extended optimization scheme
,”
J. Chem. Phys.
80
,
1204
1214
(
1984
).
71.
E. R.
Sayfutyarova
,
Q.
Sun
,
G. K.-L.
Chan
, and
G.
Knizia
, “
Automated construction of molecular active spaces from atomic valence orbitals
,”
J. Chem. Theory Comput.
13
,
4063
4078
(
2017
).
72.
C. J.
Stein
and
M.
Reiher
, “
Automated selection of active orbital spaces
,”
J. Chem. Theory Comput.
12
,
1760
1771
(
2016
).
73.
E. R.
Sayfutyarova
and
S.
Hammes-Schiffer
, “
Constructing molecular π-orbital active spaces for multireference calculations of conjugated systems
,”
J. Chem. Theory Comput.
15
,
1679
1689
(
2019
).

Supplementary Material

You do not currently have access to this content.