Charge-displacement (CD) analysis has recently proven to be a simple and powerful scheme for quantitatively analyzing the profile the charge redistribution occurring upon intermolecular interactions along a given interaction axis. However, when two molecular fragments bind through complex interactions involving multiple concurrent charge flows, ordinary CD analysis is capable of providing only an averaged picture of the related charge-flow profiles and no detailed information on each of them. In this article, we combine CD analysis with a Hirshfeld partitioning of the molecular charge redistribution for a local analysis on focused portions of the molecule, allowing for a detailed characterization of one charge flow at a time. The resulting scheme—the local charge-displacement (LCD) analysis—is tested on the intriguing case of the dimethyl sulfide–sulfur dioxide complex, characterized by concurrent charge flows relating to a sulfur–sulfur homochalcogen interaction and a pair of hydrogen bonds. The LCD scheme is then applied to the analysis of multiple hydrogen bonding in the acetic acid dimer, of base-pairing interactions in DNA, and of ambifunctional hydrogen bonding in the ammonia–pyridine complex.

1.
G. N.
Lewis
, “
The atom and the molecule
,”
J. Am. Chem. Soc.
38
,
762
785
(
1916
).
2.
R. F. W.
Bader
,
W. H.
Henneker
, and
P. E.
Cade
, “
Molecular charge distributions and chemical binding
,”
J. Chem. Phys.
46
,
3341
3363
(
1967
).
3.
R. F. W.
Bader
,
I.
Keaveny
, and
P. E.
Cade
, “
Molecular charge distributions and chemical binding. II. First-row diatomic hydrides, AH
,”
J. Chem. Phys.
47
,
3381
3402
(
1967
).
4.
R. E.
Brown
and
H.
Shull
, “
A configuration interaction study of the four lowest 1Σ+ states of the LiH molecule
,”
Int. J. Quantum Chem.
2
,
663
685
(
1968
).
5.
P.
Politzer
and
R. R.
Harris
, “
Properties of atoms in molecules. I. Proposed definition of the charge on an atom in a molecule
,”
J. Am. Chem. Soc.
92
,
6451
6454
(
1970
).
6.
L.
Belpassi
,
I.
Infante
,
F.
Tarantelli
, and
L.
Visscher
, “
The chemical bond between Au(I) and the noble gases. Comparative study of NgAuF and NgAu+ (Ng = Ar, Kr, Xe) by density functional and coupled cluster methods
,”
J. Am. Chem. Soc.
130
,
1048
1060
(
2008
).
8.
G.
Bistoni
,
S.
Rampino
,
F.
Tarantelli
, and
L.
Belpassi
, “
Charge-displacement analysis via natural orbitals for chemical valence: Charge transfer effects in coordination chemistry
,”
J. Chem. Phys.
142
,
084112
(
2015
).
9.
M.
De Santis
,
S.
Rampino
,
H. M.
Quiney
,
L.
Belpassi
, and
L.
Storchi
, “
Charge-displacement analysis via natural orbitals for chemical valence in the four-component relativistic framework
,”
J. Chem. Theory Comput.
14
,
1286
1296
(
2018
).
10.
G.
Bistoni
,
S.
Rampino
,
N.
Scafuri
,
G.
Ciancaleoni
,
D.
Zuccaccia
,
L.
Belpassi
, and
F.
Tarantelli
, “
How π back-donation quantitatively controls the CO stretching response in classical and non-classical metal carbonyl complexes
,”
Chem. Sci.
7
,
1174
1184
(
2016
).
11.
M.
Fusè
,
I.
Rimoldi
,
E.
Cesarotti
,
S.
Rampino
, and
V.
Barone
, “
On the relation between carbonyl stretching frequencies and the donor power of chelating diphosphines in nickel dicarbonyl complexes
,”
Phys. Chem. Chem. Phys.
19
,
9028
9038
(
2017
).
12.
M.
Fusè
,
I.
Rimoldi
,
G.
Facchetti
,
S.
Rampino
, and
V.
Barone
, “
Exploiting coordination geometry to selectively predict the σ-donor and π-acceptor abilities of ligands: A back-and-forth journey between electronic properties and spectroscopy
,”
Chem. Commun.
54
,
2397
2400
(
2018
).
13.
M.
Schmitt
and
I.
Krossing
, “
Terminal end-on coordination of dinitrogen versus isoelectronic CO: A comparison using the charge displacement analysis
,”
J. Comput. Chem.
(
published online
2022
).
14.
D.
Cappelletti
,
E.
Ronca
,
L.
Belpassi
,
F.
Tarantelli
, and
F.
Pirani
, “
Revealing charge-transfer effects in gas-phase water chemistry
,”
Acc. Chem. Res.
45
,
1571
1580
(
2012
).
15.
G.
Ciancaleoni
,
C.
Santi
,
M.
Ragni
, and
A. L.
Braga
, “
Charge-displacement analysis as a tool to study chalcogen bonded adducts and predict their association constants in solution
,”
Dalton Trans.
44
,
20168
20175
(
2015
).
16.
F.
Nunzi
,
D.
Cesario
,
F.
Pirani
,
L.
Belpassi
,
G.
Frenking
,
F.
Grandinetti
, and
F.
Tarantelli
, “
Helium accepts back-donation in highly polar complexes: New insights into the weak chemical bond
,”
J. Phys. Chem. Lett.
8
,
3334
3340
(
2017
).
17.
W.
Li
,
L.
Spada
,
N.
Tasinato
,
S.
Rampino
,
L.
Evangelisti
,
A.
Gualandi
,
P. G.
Cozzi
,
S.
Melandri
,
V.
Barone
, and
C.
Puzzarini
, “
Theory meets experiment for noncovalent complexes: The puzzling case of pnicogen interactions
,”
Angew. Chem., Int. Ed.
57
,
13853
13857
(
2018
).
18.
D. A.
Obenchain
,
L.
Spada
,
S.
Alessandrini
,
S.
Rampino
,
S.
Herbers
,
N.
Tasinato
,
M.
Mendolicchio
,
P.
Kraus
,
J.
Gauss
,
C.
Puzzarini
,
J.-U.
Grabow
, and
V.
Barone
, “
Unveiling the sulfur–sulfur bridge: Accurate structural and energetic characterization of a homochalcogen intermolecular bond
,”
Angew. Chem., Int. Ed.
57
,
15822
15826
(
2018
).
19.
A.
Patti
,
S.
Pedotti
,
G.
Mazzeo
,
G.
Longhi
,
S.
Abbate
,
L.
Paoloni
,
J.
Bloino
,
S.
Rampino
, and
V.
Barone
, “
Ferrocenes with simple chiral substituents: An in-depth theoretical and experimental VCD and ECD study
,”
Phys. Chem. Chem. Phys.
21
,
9419
9432
(
2019
).
20.
L.
Sagresti
and
S.
Rampino
, “
Charge-flow profiles along curvilinear paths: A flexible scheme for the analysis of charge displacement upon intermolecular interactions
,”
Molecules
26
,
6409
(
2021
).
21.
S.
Rampino
,
L.
Storchi
, and
L.
Belpassi
, “
Gold–superheavy-element interaction in diatomics and cluster adducts: A combined four-component Dirac-Kohn-Sham/charge-displacement study
,”
J. Chem. Phys.
143
,
024307
(
2015
).
22.
M.
De Santis
,
S.
Rampino
,
L.
Storchi
,
L.
Belpassi
, and
F.
Tarantelli
, “
The chemical bond and s-d hybridization in coinage metal(I) cyanides
,”
Inorg. Chem.
58
,
11716
11729
(
2019
).
23.
S.
Rampino
,
L.
Belpassi
,
F.
Tarantelli
, and
L.
Storchi
, “
Full parallel implementation of an all-electron four-component Dirac-Kohn-Sham program
,”
J. Chem. Theory Comput.
10
,
3766
3776
(
2014
).
24.
L.
Storchi
,
S.
Rampino
,
L.
Belpassi
,
F.
Tarantelli
, and
H. M.
Quiney
, “
Efficient parallel all-electron four-component Dirac–Kohn–Sham program using a distributed matrix approach II
,”
J. Chem. Theory Comput.
9
,
5356
5364
(
2013
).
25.
F. L.
Hirshfeld
, “
Bonded-atom fragments for describing molecular charge densities
,”
Theor. Chim. Acta
44
,
129
138
(
1977
).
26.
P.
Bultinck
,
C.
Van Alsenoy
,
P. W.
Ayers
, and
R.
Carbó-Dorca
, “
Critical analysis and extension of the Hirshfeld atoms in molecules
,”
J. Chem. Phys.
126
,
144111
(
2007
).
27.
F.
Heidar-Zadeh
,
P. W.
Ayers
,
T.
Verstraelen
,
I.
Vinogradov
,
E.
Vöhringer-Martinez
, and
P.
Bultinck
, “
Information-theoretic approaches to atoms-in-molecules: Hirshfeld family of partitioning schemes
,”
J. Phys. Chem. A
122
,
4219
4245
(
2018
).
28.
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
G. A.
Petersson
,
H.
Nakatsuji
,
X.
Li
,
M.
Caricato
,
A. V.
Marenich
,
J.
Bloino
,
B. G.
Janesko
,
R.
Gomperts
,
B.
Mennucci
,
H. P.
Hratchian
,
J. V.
Ortiz
,
A. F.
Izmaylov
,
J. L.
Sonnenberg
,
D.
Williams-Young
,
F.
Ding
,
F.
Lipparini
,
F.
Egidi
,
J.
Goings
,
B.
Peng
,
A.
Petrone
,
T.
Henderson
,
D.
Ranasinghe
,
V. G.
Zakrzewski
,
J.
Gao
,
N.
Rega
,
G.
Zheng
,
W.
Liang
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
K.
Throssell
,
J. A.
Montgomery
, Jr.
,
J. E.
Peralta
,
F.
Ogliaro
,
M. J.
Bearpark
,
J. J.
Heyd
,
E. N.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
T. A.
Keith
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A. P.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
J. M.
Millam
,
M.
Klene
,
C.
Adamo
,
R.
Cammi
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
O.
Farkas
,
J. B.
Foresman
, and
D. J.
Fox
, gaussian 16, Revision C.01,
Gaussian, Inc.
,
Wallingford, CT
,
2016
.
29.
S.
Grimme
, “
Semiempirical hybrid density functional with perturbative second-order correlation
,”
J. Chem. Phys.
124
,
034108
(
2006
).
30.
E.
Papajak
,
H. R.
Leverentz
,
J.
Zheng
, and
D. G.
Truhlar
, “
Efficient diffuse basis sets: cc-pVxZ+ and maug-cc-pVxZ
,”
J. Chem. Theory Comput.
5
,
1197
1202
(
2009
).
31.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
32.
T.
Fornaro
,
M.
Biczysko
,
J.
Bloino
, and
V.
Barone
, “
Reliable vibrational wavenumbers for C=O and N–H stretchings of isolated and hydrogen-bonded nucleic acid bases
,”
Phys. Chem. Chem. Phys.
18
,
8479
8490
(
2016
).
33.
L.
Spada
,
N.
Tasinato
,
F.
Vazart
,
V.
Barone
,
W.
Caminati
, and
C.
Puzzarini
, “
Noncovalent interactions and internal dynamics in pyridine–ammonia: A combined quantum-chemical and microwave spectroscopy study
,”
Chem. - Eur. J.
23
,
4876
4883
(
2017
).
34.
S.
Rampino
, CUBES: A library and a program suite for manipulating orbitals and densities, VIRT&L-COMM.7.2015.6 (
2015
).
35.
E. D.
Glendening
,
C. R.
Landis
, and
F.
Weinhold
, “
Natural bond orbital methods
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
1
42
(
2012
).
36.
P.
Hobza
and
Z.
Havlas
, “
Blue-shifting hydrogen bonds
,”
Chem. Rev.
100
,
4253
4264
(
2000
).
37.
U.
Koch
and
P. L. A.
Popelier
, “
Characterization of C–H–O hydrogen bonds on the basis of the charge density
,”
J. Phys. Chem.
99
,
9747
9754
(
1995
).
38.
E.
Ronca
,
L.
Belpassi
, and
F.
Tarantelli
, “
A quantitative view of charge transfer in the hydrogen bond: The water dimer case
,”
ChemPhysChem
15
,
2682
2687
(
2014
).
39.
C.
Fonseca Guerra
,
F. M.
Bickelhaupt
,
J. G.
Snijders
, and
E. J.
Baerends
, “
The nature of the hydrogen bond in DNA base pairs: The role of charge transfer and resonance assistance
,”
Chem. - Eur. J.
5
,
3581
3594
(
1999
).
40.
R.
Parthasarathi
,
R.
Amutha
,
V.
Subramanian
,
B. U.
Nair
, and
T.
Ramasami
, “
Bader’s and reactivity descriptors’ analysis of DNA base pairs
,”
J. Phys. Chem. A
108
,
3817
3828
(
2004
).
41.
V.
Vennelakanti
,
H. W.
Qi
,
R.
Mehmood
, and
H. J.
Kulik
, “
When are two hydrogen bonds better than one? Accurate first-principles models explain the balance of hydrogen bond donors and acceptors found in proteins
,”
Chem. Sci.
12
,
1147
1162
(
2021
).
42.
A.
Salvadori
,
M.
Fusè
,
G.
Mancini
,
S.
Rampino
, and
V.
Barone
, “
Diving into chemical bonding: An immersive analysis of the electron charge rearrangement through virtual reality
,”
J. Comput. Chem.
39
,
2607
2617
(
2018
).
43.
J.
Lupi
,
M.
Martino
,
A.
Salvadori
,
S.
Rampino
,
G.
Mancini
, and
V.
Barone
, “
Virtual reality tools for advanced modeling
,”
AIP Conf. Proc.
2145
,
020001
(
2019
).
44.
A.
Bauzá
,
I.
Alkorta
,
J.
Elguero
,
T. J.
Mooibroek
, and
A.
Frontera
, “
Spodium bonds: Noncovalent interactions involving group 12 elements
,”
Angew. Chem., Int. Ed.
59
,
17482
17487
(
2020
).
45.
G.
Ciancaleoni
and
L.
Rocchigiani
, “
Assessing the orbital contribution in the ‘spodium bond’ by natural orbital for chemical valence–charge displacement analysis
,”
Inorg. Chem.
60
,
4683
4692
(
2021
).

Supplementary Material

You do not currently have access to this content.