This paper combines the valence bond block diabatization approach with the idea of orbital breathing. With highly compact wave functions, the breathing orbital valence bond (BOVB) method is applied to investigate several atomic and molecular properties, including the electron affinity of F, the adiabatic and diabatic potential energy curves and the dipole moment curves of the two lowest-lying 1Σ+ states, the electronic coupling curve and the crossing distance of the two diabatic states, and the spectroscopic constants of the ground states for LiF. The configuration selection scheme proposed in this work is quite general, requiring only the selection of several de-excitation and excitation orbitals in a sense like the restricted active space self-consistent field method. Practically, this is also the first time that BOVB results are extrapolated to complete basis set limit. Armed with the chemical intuition provided by valence bond theory, the classic but challenging covalent-ionic interaction in the title molecule is not only conceptually interpreted but also accurately computed.

1.
M.
Born
and
J. R.
Oppenheimer
,
Ann. Phys.
84
,
457
(
1927
).
2.
G. A.
Worth
and
L. S.
Cederbaum
, “
Beyond Born-Oppenheimer: Molecular dynamics through a conical intersection
,”
Annu. Rev. Phys. Chem.
55
,
127
(
2004
).
3.
M.
Klessinger
and
J.
Michl
,
Excited States and Photochemistry of Organic Molecules
(
Wiley-VCH
,
1995
).
4.
H.
Eyring
, “
The energy of activation for bimolecular reactions involving hydrogen and the halogens, according to the quantum mechanics
,”
J. Am. Chem. Soc.
53
,
2537
(
1931
).
5.
C.
Fang
,
L.
Tang
,
B. G.
Oscar
, and
C.
Chen
, “
Capturing Structural Snapshots during Photochemical Reactions with Ultrafast Raman Spectroscopy: From Materials Transformation to Biosensor Responses
,”
J. Phys. Chem. Lett.
9
,
3253
3263
(
2018
).
6.
I.
Gómez
,
M.
Reguero
,
M.
Boggio-Pasqua
, and
M. A.
Robb
, “
Intramolecular charge transfer in 4-aminobenzonitriles does not necessarily need the twist
,”
J. Am. Chem. Soc.
127
,
7119
(
2005
).
7.
Y.
Zhao
and
W.
Liang
, “
Charge transfer in organic molecules for solar cells: Theoretical perspective
,”
Chem. Soc. Rev.
41
,
1075
(
2012
).
8.
E.
Teller
, “
The crossing of potential surfaces
,”
J. Phys. Chem.
41
,
109
(
1937
).
9.
J. C.
Polanyi
and
A. H.
Zewail
, “
Direct observation of the transition state
,”
Acc. Chem. Res.
28
,
119
(
1995
).
10.
G. G.
Balint‐Kurti
, and
M.
Karplus
, “
Multistructure valence‐bond and atoms‐in‐molecules calculations for LiF, F2, and F2
,”
J. Chem. Phys.
50
,
478
(
1969
).
11.
R. S.
Mulliken
and
W. B.
Person
,
Molecular Complexes: A Lecture and Reprint Volume
(
Wiley-Interscience
,
1969
).
12.
E. S.
Rittner
, “
Binding energy and dipole moment of alkali halide molecules
,”
J. Chem. Phys.
19
,
1030
(
1951
).
13.
C. E.
Moore
,
Atomic Energy Levels
(
National Bureau of Standards
,
Washington
,
1949
), Vol. 1, p.
467
.
14.
H.
Hotop
and
W. C.
Lineberger
, “
Binding energies in atomic negative ions
,”
J. Phys. Chem. Ref. Data
4
,
539
(
1975
).
15.
A.
Dalgarno
, “
Atomic polarizabilities and shielding factors
,”
Adv. Phys.
11
,
281
(
1962
).
16.
R. S.
Berry
and
C. W.
Reimann
, “
Absorption spectrum of gaseous F‐ and electron affinities of the halogen atoms
,”
J. Chem. Phys.
38
,
1540
(
1963
).
17.
L.
Brewer
and
E.
Brackett
, “
The dissociation energies of gaseous alkali halides
,”
Chem. Rev.
61
,
425
(
1961
).
18.
A. J. C.
Varandas
, “
Accurate ab initio potential energy curves for the classic Li–F ionic-covalent interaction by extrapolation to the complete basis set limit and modeling of the radial nonadiabatic coupling
,”
J. Chem. Phys.
131
,
124128
(
2009
).
19.
J.
Franz
, “
Multi-state multi-reference Møller–Plesset second-order perturbation theory for molecular calculations
,”
Int. J. Quantum Chem.
106
,
773
(
2006
).
20.
C. W.
Bauschlicher
and
S. R.
Langhoff
, “
Full configuration‐interaction study of the ionic–neutral curve crossing in LiF
,”
J. Chem. Phys.
89
,
4246
(
1988
).
21.
H. J.
Werner
and
W.
Meyer
, “
MCSCF study of the avoided curve crossing of the two lowest 1Σ+ states of LiF
,”
J. Chem. Phys.
74
,
5802
(
1981
).
22.
R.
Grice
and
D. R.
Herschbach
, “
Long-range configuration interaction of ionic and covalent states
,”
Mol. Phys.
27
,
159
(
1974
).
23.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Sigbahn
, “
A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach
,”
Chem. Phys.
48
,
157
(
1980
).
24.
L. R.
Kahn
,
P. J.
Hay
, and
I.
Shavitt
, “
Theoretical study of curve crossing: Ab initio calculations on the four lowest 1Σ+ states of LiF
,”
J. Chem. Phys.
61
,
3530
(
1974
).
25.
H.
Nakamura
and
D. G.
Truhlar
, “
Direct diabatization of electronic states by the fourfold way. II. Dynamical correlation and rearrangement processes
,”
J. Chem. Phys.
117
,
5576
(
2002
).
26.
Y.
Zeiri
and
G. G.
Balint-Kurti
, “
Theory of alkali halide photofragmentation: Potential energy curves and transition dipole moments
,”
J. Mol. Spectrosc.
99
,
1
(
1983
).
27.
S.
Bienstock
and
A.
Dalgarno
, “
Mutual neutralization and chemi‐ionization collisions of lithium and fluorine
,”
J. Chem. Phys.
78
,
224
(
1983
).
28.
D. L.
Cooper
,
S.
Bienstock
, and
A.
Dalgarno
, “
Mutual neutralization and chemiionization in collisions of alkali metal and halogen atoms
,”
J. Chem. Phys.
86
,
3845
(
1987
).
29.
X.
Lin
,
X.
Liu
,
F.
Ying
,
Z.
Chen
, and
W.
Wu
, “
Explicit construction of diabatic state and its application to the direct evaluation of electronic coupling
,”
J. Chem. Phys.
149
,
044112
(
2018
).
30.
B.
Braïda
,
Z.
Chen
,
W.
Wu
, and
P. C.
Hiberty
, “
Valence bond alternative yielding compact and accurate wave functions for challenging excited states. Application to ozone and sulfur dioxide
,”
J. Chem. Theory Comput.
17
,
330
(
2021
).
31.
Z.
Chen
,
X.
Chen
, and
W.
Wu
, “
Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. I. Hamiltonian matrix elements between internally contracted excited valence bond wave functions
,”
J. Chem. Phys.
138
,
164119
(
2013
).
32.
J.
Miralles
,
O.
Castell
,
R.
Caballol
, and
J.-P.
Malrieu
, “
Specific CI calculation of energy differences: Transition energies and bond energies
,”
Chem. Phys.
172
,
33
(
1993
).
33.
V. M.
García
,
O.
Castell
,
R.
Caballol
, and
J.-P.
Malrieu
, “
An iterative difference-dedicated configuration interaction. Proposal and test studies
,”
Chem. Phys. Lett.
238
,
222
(
1995
).
34.
P. C.
Hiberty
and
S.
Shaik
, “
Breathing-orbital valence bond method—A modern valence bond method that includes dynamic correlation
,”
Theor. Chem. Acc.
108
,
255
(
2002
).
35.
W. A.
Goddard
 III
, “
Improved quantum theory of many-electron systems. I. Construction of eigenfunctions of S2 which satisfy Pauli’s principle
,”
Phys. Rev.
157
,
73
(
1967
).
36.
W. J.
Hunt
,
P. J.
Hay
, and
W. A.
Goddard
 III
, “
Self‐consistent procedures for generalized valence bond wavefunctions. Applications H3, BH, H2O, C2H6, and O2
,”
J. Chem. Phys.
57
,
738
(
1972
).
37.
C. C. J.
Roothaan
, “
New developments in molecular orbital theory
,”
Rev. Mod. Phys.
23
,
69
(
1951
).
38.
D.
Feller
, “
Application of systematic sequences of wave functions to the water dimer
,”
J. Chem. Phys.
96
,
6104
(
1992
).
39.
D.
Feller
, “
The use of systematic sequences of wave functions for estimating the complete basis set, full configuration interaction limit in water
,”
J. Chem. Phys.
98
,
7059
(
1993
).
40.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
, “
Basis-set convergence of correlated calculations on water
,”
J. Chem. Phys.
106
,
9639
(
1997
).
41.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
, “
Basis-set convergence in correlated calculations on Ne, N2, and H2O
,”
Chem. Phys. Lett.
286
,
243
(
1998
).
42.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
, “
Basis-set convergence of the energy in molecular Hartree–Fock calculations
,”
Chem. Phys. Lett.
302
,
437
(
1999
).
43.
L.
Song
,
Z.
Chen
,
F.
Ying
,
J.
Song
,
J.
Song
,
X.
Chen
,
P.
Su
,
Y.
Mo
,
Q.
Zhang
, and
W.
Wu
,
XMVB 2.1: An Ab Initio Non-Orthogonal Valence Bond Program
(
Xiamen University
,
Xiamen, China
,
2015
).
44.
Z.
Chen
,
X.
Chen
, and
W.
Wu
, “
Nonorthogonal orbital based N-body reduced density matrices and their applications to valence bond theory. II. An efficient algorithm for matrix elements and analytical energy gradients in VBSCF method
,”
J. Chem. Phys.
138
,
164120
(
2013
).
45.
L.
Song
,
Y.
Mo
,
Q.
Zhang
, and
W.
Wu
, “
XMVB: A program for ab initio nonorthogonal valence bond computations
,”
J. Comput. Chem.
26
,
514
(
2005
).
46.
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
, “
Molpro: A general‐purpose quantum chemistry program package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
47.
H. J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
,
M.
Schütz
,
P.
Celani
,
W.
Gyürffy
,
D.
Kats
,
T.
Korona
,
R.
Lindh
,
A.
Mitrushenkov
,
G.
Rauhut
,
K. R.
Shamasundar
,
T. B.
Adler
,
R. D.
Amos
,
A.
Bernhardsson
,
A.
Berning
,
D. L.
Cooper
,
M. J. O.
Deegan
,
A. J.
Dobbyn
,
E. G. F.
Eckert
,
C.
Hampel
,
A.
Hesselmann
,
G.
Hetzer
,
G.
Jansen
,
C.
Köppl
,
Y.
Liu
,
A. W.
Lloyd
,
R. A.
Mata
,
A. J.
May
,
S. J.
McNicholas
,
W.
Meyer
,
M. E.
Mura
,
A.
Nicklaß
,
D. P.
O'Neill
,
P.
Palmieri
,
D.
Peng
,
F. R.
Manby
,
K.
Pflüger
,
R.
Pitzer
,
M.
Reiher
,
T.
Shiozaki
,
H.
Stoll
,
A. J.
Stone
,
R.
Tarroni
,
T.
Thorsteinsson
, and
M.
Wang
, molpro, version 2010.1, a package of ab initio programs,
2010
.
48.
L.
Song
,
W.
Wu
,
Q.
Zhang
, and
S.
Shaik
, “
A practical valence bond method: A configuration interaction method approach with perturbation theoretic facility
,”
J. Comput. Chem.
25
,
472
(
2004
).
49.
E. R.
Davidson
, “
Properties and uses of natural orbitals
,”
Rev. Mod. Phys.
44
,
451
(
1972
).
50.
N.
Zhang
,
W.
Liu
, and
M. R.
Hoffmann
, “
Iterative configuration interaction with selection
,”
J. Chem. Theory Comput.
16
,
2296
(
2020
).
51.
Z.
Ni
,
Y.
Guo
,
F.
Neese
,
W.
Li
, and
S.
Li
, “
Cluster-in-molecule local correlation method with an accurate distant pair correction for large systems
,”
J. Chem. Theory Comput.
17
,
756
(
2021
).
52.
W.
Klopper
,
R. A.
Bachorz
,
D. P.
Tew
, and
C.
Hättig
, “
Sub-meV accuracy in first-principles computations of the ionization potentials and electron affinities of the atoms H to Ne
,”
Phys. Rev. A
81
,
022503
(
2010
).
53.
C.
Blondel
,
C.
Delsart
, and
F.
Goldfarb
, “
Electron spectrometry at the µeV level and the electron affinities of Si and F
,”
J. Phys. B: At., Mol. Opt. Phys.
34
,
L281
(
2001
).
54.
S.
Gronert
, “
The need for additional diffuse functions in calculations on small anions: The G2(DD) approach
,”
Chem. Phys. Lett.
252
,
415
(
1996
).
55.
N.
Treitel
,
R.
Shenhar
,
I.
Aprahamian
,
T.
Sheradsky
, and
M.
Rabinovitz
, “
Calculations of PAH anions: When are diffuse functions necessary?
,”
Phys. Chem. Chem. Phys.
6
,
1113
(
2004
).
56.
K.
Andersson
,
P. Å.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
, “
Second-order perturbation theory with a CASSCF reference function
,”
J. Phys. Chem.
94
,
5483
(
1990
).
57.
P.
Celani
and
H.-J.
Werner
, “
Multireference perturbation theory for large restricted and selected active space reference wave functions
,”
J. Chem. Phys.
112
,
5546
(
2000
).
58.
O.
Legeza
,
ö
Legeza
,
J.
Röder
, and
B. A.
Hess
, “
QC-DMRG study of the ionic-neutral curve crossing of LiF
,”
Mol. Phys.
101
,
2019
(
2003
).
59.
M.
Hanrath
, “
Multi-reference coupled-cluster study of the ionic-neutral curve crossing LiF
,”
Mol. Phys.
106
,
1949
(
2008
).
60.
Y.
Lei
,
Y.
Wang
,
H.
Han
,
Q.
Song
,
B.
Suo
, and
Z.
Wen
, “
New implementation of the configuration-based multi-reference second order perturbation theory
,”
J. Chem. Phys.
137
,
144102
(
2012
).
61.
K. R.
Yang
,
X.
Xu
, and
D. G.
Truhlar
, “
Direct diabatization of electronic states by the fourfold-way: Including dynamical correlation by multi-configuration quasidegenerate perturbation theory with complete active space self-consistent-field diabatic molecular orbitals
,”
Chem. Phys. Lett.
573
,
84
(
2013
).
62.
C.
Li
and
F. A.
Evangelista
, “
Driven similarity renormalization group for excited states: A state-averaged perturbation theory
,”
J. Chem. Phys.
148
,
124106
(
2018
).
63.
Y.
Song
,
Y.
Guo
,
Y.
Lei
,
N.
Zhang
, and
W.
Liu
, “
The static–dynamic–static family of methods for strongly correlated electrons: Methodology and benchmarking
,”
Top. Curr. Chem.
379
,
43
(
2021
).
64.
D. L.
Dexter
, “
A theory of sensitized luminescence in solids
,”
J. Chem. Phys.
21
,
836
(
1953
).
65.
J. J.
Hopfield
, “
Electron transfer between biological molecules by thermally activated tunneling
,”
Proc. Natl. Acad. Sci. U. S. A.
71
,
3640
(
1974
).
66.
P. Å.
Malmqvist
,
A.
Rendell
, and
B. O.
Roos
, “
The restricted active space self-consistent-field method, implemented with a split graph unitary group approach
,”
J. Phys. Chem.
94
,
5477
(
1990
).
67.
P. Å.
Malmqvist
,
B. O.
Roos
, and
B.
Schimmelpfennig
, “
The restricted active space (RAS) state interaction approach with spin–orbit coupling
,”
Chem. Phys. Lett.
357
,
230
(
2002
).
68.
M. R.
Hoffmann
,
D. J.
Fox
,
J. F.
Gaw
,
Y.
Osamura
,
Y.
Yamaguchi
,
R. S.
Grev
,
G.
Fitzgerald
,
H. F.
Schaefer III
,
P. J.
Knowles
, and
N. C.
Handy
, “
Analytic energy second derivatives for general MCSCF wave functions
,”
J. Chem. Phys.
80
,
2660
(
1984
).
69.
Y. G.
Khait
,
J.
Song
, and
M. R.
Hoffmann
, “
Explication and revision of generalized Van Vleck perturbation theory for molecular electronic structure
,”
J. Chem. Phys.
117
,
4133
(
2002
).
70.
E. F.
Pearson
and
W.
Gordy
, “
Millimeter- and submillimeter-wave spectra and molecular constants of LiF and LiCl
,”
Phys. Rev.
177
,
52
(
1969
).
71.
S. E.
Veazey
and
W.
Gordy
, “
Millimeter-wave molecular-beam spectroscopy: Alkali fluorides
,”
Phys. Rev.
138
,
A1303
(
1965
).

Supplementary Material

You do not currently have access to this content.