The multireference second-order perturbation theory (CASPT2) is known to deliver a quantitative description of various complex electronic states. Despite its near-size-consistent nature, the applicability of the CASPT2 method to large, real-life systems is mostly hindered by large computational and storage costs for the two-external tensors, such as two-electron integrals, amplitudes, and residuum. To this end, Menezes and co-workers developed a reduced-scaling CASPT2 scheme by incorporating the local pair-natural orbital (PNO) representation of the many-body wave functions using non-orthonormal projected atomic orbitals (PAOs) into the CASPT theory [F. Menezes et al., J. Chem. Phys. 145, 124115 (2016)]. Alternatively, in this paper, we develop a new PNO-based CASPT2 scheme using the orthonormal localized virtual molecular orbitals (LVMOs) and assess its performance and accuracy in comparison with the conventional PAO-based counterpart. Albeit the compactness, the LVMOs were considered to perform somewhat poorly compared to PAOs in the local correlation framework because they caused enormously large orbital domains. In this work, we show that the size of LVMO domains can be rendered comparable to or even smaller than that of PAOs by the use of the differential overlap integrals for domain construction. Optimality of the MOs from the CASSCF treatment is a key to reducing the LVMO domain size for the multireference case. Due to the augmented Hessian-based localization algorithm, an additional computational cost for obtaining the LVMOs is relatively minor. We demonstrate that the LVMO-based PNO-CASPT2 method is routinely applicable to large, real-life molecules such as Menshutkin SN2 reaction in a single-walled carbon nanotube reaction field.

1.
C.
Møller
and
M. S.
Plesset
, “
Note on an approximation treatment for many-electron systems
,”
Phys. Rev.
46
,
618
(
1934
).
2.
J.
Paldus
,
J.
Čížek
, and
I.
Shavitt
,
Phys. Rev. A
5
,
50
(
1972
).
3.
R. J.
Bartlett
,
Annu. Rev. Phys. Chem.
32
,
359
(
1981
).
4.
R. J.
Bartlett
and
M.
Musiał
,
Rev. Mod. Phys.
79
,
291
(
2007
).
5.
G. D.
Purvis
and
R. J.
Bartlett
, “
A full coupled-cluster singles and doubles model: The inclusion of disconnected triples
,”
J. Chem. Phys.
76
,
1910
1918
(
1982
).
6.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
7.
K.
Andersson
,
P. A.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
, “
Second-order perturbation theory with a CASSCF reference function
,”
J. Phys. Chem.
94
,
5483
5488
(
1990
).
8.
K.
Andersson
,
P. Å.
Malmqvist
, and
B. O.
Roos
, “
Second-order perturbation theory with a complete active space self-consistent field reference function
,”
J. Chem. Phys.
96
,
1218
1226
(
1992
).
9.
J.
Wen
,
B.
Han
,
Z.
Havlas
, and
J.
Michl
, “
An MS-CASPT2 calculation of the excited electronic states of an axial difluoroborondipyrromethene (BODIPY) dimer
,”
J. Chem. Theory Comput.
14
,
4291
4297
(
2018
).
10.
M.
Radoń
and
K.
Pierloot
, “
Binding of CO, NO, and O2 to heme by density functional and multireference ab initio calculations
,”
J. Phys. Chem.
112
,
11824
11832
(
2008
).
11.
D.
Bím
,
J.
Chalupský
,
M.
Culka
,
E. I.
Solomon
,
L.
Rulíšek
, and
M.
Srnec
, “
Proton–electron transfer to the active site is essential for the reaction mechanism of soluble Δ9-desaturase
,”
J. Am. Chem. Soc.
142
,
10412
10423
(
2020
).
12.
M. G.
Delcey
,
K.
Pierloot
,
Q. M.
Phung
,
S.
Vancoillie
,
R.
Lindh
, and
U.
Ryde
, “
Accurate calculations of geometries and singlet–triplet energy differences for active-site models of [NiFe] hydrogenase
,”
Phys. Chem. Chem. Phys.
16
,
7927
7938
(
2014
).
13.
L.
Gagliardi
and
B. O.
Roos
, “
Quantum chemical calculations show that the uranium molecule U2 has a quintuple bond
,”
Nature
433
,
848
851
(
2005
).
14.
F.
Talotta
,
J.-L.
Heully
,
F.
Alary
,
I. M.
Dixon
,
L.
González
, and
M.
Boggio-Pasqua
, “
Linkage photoisomerization mechanism in a photochromic ruthenium nitrosyl complex: New insights from an MS-CASPT2 study
,”
J. Chem. Theory Comput.
13
,
6120
6130
(
2017
).
15.
F.
Talotta
,
L.
González
, and
M.
Boggio-Pasqua
, “
CASPT2 potential energy curves for no dissociation in a ruthenium nitrosyl complex
,”
Molecules
25
,
2613
(
2020
).
16.
W.
Meyer
, in
Modern Theoretical Chemistry
, edited by
H. F.
Schaefer
(
Plenum
,
New York
,
1977
).
17.
G.
Ghigo
,
B. O.
Roos
, and
P.-Å.
Malmqvist
, “
A modified definition of the zeroth-order Hamiltonian in multiconfigurational perturbation theory (CASPT2)
,”
Chem. Phys. Lett.
396
,
142
149
(
2004
).
18.
D. W.
Smith
and
O. W.
Day
, “
Extension of Koopmans’ theorem. I. Derivation
,”
J. Chem. Phys.
62
,
113
114
(
1975
).
19.
M. M.
Morrell
,
R. G.
Parr
, and
M.
Levy
, “
Calculation of ionization potentials from density matrices and natural functions, and the long-range behavior of natural orbitals and electron density
,”
J. Chem. Phys.
62
,
549
554
(
1975
).
20.
C.
Kollmar
,
K.
Sivalingam
, and
F.
Neese
, “
An alternative choice of the zeroth-order Hamiltonian in CASPT2 theory
,”
J. Chem. Phys.
152
,
214110
(
2020
).
21.
B. O.
Roos
and
K.
Andersson
, “
Multiconfigurational perturbation theory with level shift—The Cr2 potential revisited
,”
Chem. Phys. Lett.
245
,
215
223
(
1995
).
22.
N.
Forsberg
and
P.-Å.
Malmqvist
, “
Multiconfiguration perturbation theory with imaginary level shift
,”
Chem. Phys. Lett.
274
,
196
204
(
1997
).
23.
A. G.
Taube
and
R. J.
Bartlett
, “
Rethinking linearized coupled-cluster theory
,”
J. Chem. Phys.
130
,
144112
(
2009
).
24.
J. L.
Whitten
,
J. Chem. Phys.
58
,
4496
(
1973
).
25.
B. I.
Dunlap
,
J. W. D.
Connolly
, and
J. R.
Sabin
, “
On some approximations in applications of Xα theory
,”
J. Chem. Phys.
71
,
3396
3402
(
1979
).
26.
M.
Feyereisen
,
G.
Fitzgerald
, and
A.
Komornicki
,
Chem. Phys. Lett.
208
,
359
(
1993
).
27.
R. A.
Kendall
and
H. A.
Früchtl
,
Theor. Chem. Acc.
97
,
158
(
1997
).
28.
N. H. F.
Beebe
and
J.
Linderberg
, “
Simplifications in the generation and transformation of two-electron integrals in molecular calculations
,”
Int. J. Quantum Chem.
12
,
683
705
(
1977
).
29.
I.
Røeggen
and
E.
Wisløff-Nilssen
, “
On the Beebe-Linderberg two-electron integral approximation
,”
Chem. Phys. Lett.
132
,
154
160
(
1986
).
30.
H.
Koch
,
A.
Sánchez de Merás
, and
T. B.
Pedersen
, “
Reduced scaling in electronic structure calculations using Cholesky decompositions
,”
J. Chem. Phys.
118
,
9481
9484
(
2003
).
31.
I.
Røeggen
and
T.
Johansen
, “
Cholesky decomposition of the two-electron integral matrix in electronic structure calculations
,”
J. Chem. Phys.
128
,
194107
(
2008
).
32.
F.
Aquilante
,
T. K.
Todorova
,
L.
Gagliardi
,
T. B.
Pedersen
, and
B. O.
Roos
, “
Systematic truncation of the virtual space in multiconfigurational perturbation theory
,”
J. Chem. Phys.
131
,
034113
(
2009
).
33.
J.
Segarra-Martí
,
M.
Garavelli
, and
F.
Aquilante
, “
Multiconfigurational second-order perturbation theory with frozen natural orbitals extended to the treatment of photochemical problems
,”
J. Chem. Theory Comput.
11
,
3772
3784
(
2015
).
34.
D.
Roca-Sanjuán
,
F.
Aquilante
, and
R.
Lindh
, “
Multiconfiguration second-order perturbation theory approach to strong electron correlation in chemistry and photochemistry
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
585
603
(
2012
).
35.
C.
Song
and
T. J.
Martínez
, “
Reduced scaling CASPT2 using supporting subspaces and tensor hyper-contraction
,”
J. Chem. Phys.
149
,
044108
(
2018
).
36.
C.
Song
and
T. J.
Martínez
, “
Reduced scaling extended multi-state CASPT2 (XMS-CASPT2) using supporting subspaces and tensor hyper-contraction
,”
J. Chem. Phys.
152
,
234113
(
2020
).
37.
C.
Song
,
J. B.
Neaton
, and
T. J.
Martínez
, “
Reduced scaling formulation of CASPT2 analytical gradients using the supporting subspace method
,”
J. Chem. Phys.
154
,
014103
(
2021
).
38.
P.
Pulay
and
S.
Saebø
, “
Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory
,”
Theor. Chim. Acta
69
,
357
(
1986
).
39.
S.
Saebø
and
P.
Pulay
, “
Fourth-order Møller-Plesset perturbation theory in the local correlation treatment. I. Method
,”
J. Chem. Phys.
86
,
914
(
1987
).
40.
41.
S.
Saebø
and
P.
Pulay
,
Chem. Phys. Lett.
113
,
13
(
1985
).
42.
S.
Saebø
and
P.
Pulay
,
Annu. Rev. Phys. Chem.
44
,
213
(
1993
).
43.
J. W.
Boughton
and
P.
Pulay
,
J. Comput. Chem.
14
,
736
(
1992
).
44.
M.
Schütz
,
G.
Hetzer
, and
H.-J.
Werner
, “
Low-order scaling local electron correlation methods. I. Linear scaling local MP2
,”
J. Chem. Phys.
111
,
5691
5705
(
1999
).
45.
G.
Hetzer
,
M.
Schütz
,
H.
Stoll
, and
H.-J.
Werner
, “
Low-order scaling local correlation methods. II: Splitting the Coulomb operator in linear scaling local second-order Møller–Plesset perturbation theory
,”
J. Chem. Phys.
113
,
9443
9455
(
2000
).
46.
M.
Schütz
and
H.-J.
Werner
, “
Local perturbative triples correction (T) with linear cost scaling
,”
Chem. Phys. Lett.
318
,
370
(
2000
).
47.
M.
Schütz
, “
Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T)
,”
J. Chem. Phys.
113
,
9986
10001
(
2000
).
48.
M.
Schütz
and
H.-J.
Werner
, “
Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD)
,”
J. Chem. Phys.
114
,
661
681
(
2001
).
49.
M.
Schütz
and
F. R.
Manby
, “
Linear scaling local coupled cluster theory with density fitting. I: 4-external integrals
,”
Phys. Chem. Chem. Phys.
5
,
3349
3358
(
2003
).
50.
T.
Korona
and
H.-J.
Werner
, “
Local treatment of electron excitations in the EOM-CCSD method
,”
J. Chem. Phys.
118
,
3006
(
2003
).
51.
H.-J.
Werner
,
P. J.
Knowles
,
G.
Knizia
,
F. R.
Manby
, and
M.
Schütz
,
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
2
,
242
(
2012
).
52.
F.
Neese
,
F.
Wennmohs
, and
A.
Hansen
, “
Efficient and accurate local approximations to coupled-electron pair approaches: An attempt to revive the pair natural orbital method
,”
J. Chem. Phys.
130
,
114108
(
2009
).
53.
F.
Neese
,
A.
Hansen
, and
D. G.
Liakos
, “
Efficient and accurate approximations to the local coupled cluster singles doubles method using a truncated pair natural orbital basis
,”
J. Chem. Phys.
131
,
064103
(
2009
).
54.
D. G.
Liakos
,
A.
Hansen
, and
F.
Neese
, “
Weak molecular interactions studied with parallel implementations of the local pair natural orbital coupled pair and coupled cluster methods
,”
J. Chem. Theory Comput.
7
,
76
87
(
2011
).
55.
W.
Kutzelnigg
, “
Direct determination of natural orbitals and natural expansion coefficients of many-electron wavefunctions. I. Natural orbitals in the geminal product approximation
,”
J. Chem. Phys.
40
,
3640
3647
(
1964
).
56.
R.
Ahlrichs
and
W.
Kutzelnigg
, “
Direct calculation of approximate natural orbitals and natural expansion coefficients of atomic and molecular electronic wavefunctions. II. Decoupling of the pair equations and calculation of the pair correlation energies for the Be and LiH ground states
,”
J. Chem. Phys.
48
,
1819
1832
(
1968
).
57.
C.
Edmiston
and
M.
Krauss
, “
Configuration-interaction calculation of H3 and H2
,”
J. Chem. Phys.
42
,
1119
1120
(
1965
).
58.
C.
Edmiston
and
M.
Krauss
, “
Pseudonatural orbitals as a basis for the superposition of configurations. I. He2+
,”
J. Chem. Phys.
45
,
1833
1839
(
1966
).
59.
R.
Ahlrichs
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
, “
PNO-CI (pair natural orbital configuration interaction) and CEPA-PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. I. Outline of the method for closed-shell states
,”
J. Chem. Phys.
62
,
1225
1234
(
1975
).
60.
R.
Ahlrichs
,
F.
Driessler
,
H.
Lischka
,
V.
Staemmler
, and
W.
Kutzelnigg
, “
PNO-CI (pair natural orbital configuration interaction) and CEPA-PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. II. The molecules BeH2, BH, BH3, CH4, CH3, NH3 (planar and pyramidal), H2O, OH+3, HF and the Ne atom
,”
J. Chem. Phys.
62
,
1235
1247
(
1975
).
61.
R.
Ahlrichs
,
F.
Keil
,
H.
Lischka
,
W.
Kutzelnigg
, and
V.
Staemmler
, “
PNO–CI (pair natural-orbital configuration interaction) and CEPA–PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. III. The molecules MgH2, AlH3, SiH4, PH3 (planar and pyramidal), H2S, HCl, and the Ar atom
,”
J. Chem. Phys.
63
,
455
463
(
1975
).
62.
R.
Ahlrichs
,
H.
Lischka
,
B.
Zurawski
, and
W.
Kutzelnigg
, “
PNO–CI (pair-natural-orbital configuration interaction) and CEPA–PNO (coupled electron pair approximation with pair natural orbitals) calculations of molecular systems. IV. The molecules N2, F2, C2H2, C2H4, and C2H6
,”
J. Chem. Phys.
63
,
4685
4694
(
1975
).
63.
P.
Čársky
,
I.
Hubač
, and
V.
Staemmler
, “
Correlation energies in open shell systems. Comparison of CEPA, PNO-CI and perturbation treatments based on the restricted Roothaan-Hartree-Fock formalism
,”
Theor. Chim. Acta
60
,
445
450
(
1982
).
64.
R.
Ahlrichs
and
W.
Kutzelnigg
, “
Ab initio calculations on small hydrides including electron correlation
,”
Theor. Chim. Acta
10
,
377
387
(
1968
).
65.
M.
Jungen
and
R.
Ahlrichs
, “
Ab initio calculations on small hydrides including electron correlation
,”
Theor. Chim. Acta
17
,
339
347
(
1970
).
66.
F.
Neese
,
A.
Hansen
,
F.
Wennmohs
, and
S.
Grimme
, “
Accurate theoretical chemistry with coupled pair models
,”
Acc. Chem. Res.
42
,
641
648
(
2009
).
67.
M.
Sparta
and
F.
Neese
, “
Chemical applications carried out by local pair natural orbital based coupled-cluster methods
,”
Chem. Soc. Rev.
43
,
5032
5041
(
2014
).
68.
C.
Riplinger
and
F.
Neese
, “
An efficient and near linear scaling pair natural orbital based local coupled cluster method
,”
J. Chem. Phys.
138
,
034106
(
2013
).
69.
C.
Riplinger
,
B.
Sandhoefer
,
A.
Hansen
, and
F.
Neese
, “
Natural triple excitations in local coupled cluster calculations with pair natural orbitals
,”
J. Chem. Phys.
139
,
134101
(
2013
).
70.
P.
Pinski
,
C.
Riplinger
,
E. F.
Valeev
, and
F.
Neese
, “
Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals
,”
J. Chem. Phys.
143
,
034108
(
2015
).
71.
C.
Riplinger
,
P.
Pinski
,
U.
Becker
,
E. F.
Valeev
, and
F.
Neese
, “
Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory
,”
J. Chem. Phys.
144
,
024109
(
2016
).
72.
M.
Saitow
,
U.
Becker
,
C.
Riplinger
,
E. F.
Valeev
, and
F.
Neese
, “
A new near-linear scaling, efficient and accurate, open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory
,”
J. Chem. Phys.
146
,
164105
(
2017
).
73.
Y.
Guo
,
C.
Riplinger
,
D. G.
Liakos
,
U.
Becker
,
M.
Saitow
, and
F.
Neese
, “
Linear scaling perturbative triples correction approximations for open-shell domain-based local pair natural orbital coupled cluster singles and doubles theory [DLPNO-CCSD(T0/T)]
,”
J. Chem. Phys.
152
,
024116
(
2020
).
74.
Y.
Guo
,
K.
Sivalingam
,
E. F.
Valeev
, and
F.
Neese
, “
Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. III. Linear-scaling multireference domain-based pair natural orbital N-electron valence perturbation theory
,”
J. Chem. Phys.
144
,
094111
(
2016
).
75.
D. P.
Tew
, “
Principal domains in local correlation theory
,”
J. Chem. Theory Comput.
15
,
6597
6606
(
2019
).
76.
H.-J.
Werner
,
G.
Knizia
,
C.
Krause
,
M.
Schwilk
, and
M.
Dornbach
, “
Scalable electron correlation methods. I. PNO-LMP2 with linear scaling in the molecular size and near-inverse-linear scaling in the number of processors
,”
J. Chem. Theory Comput.
11
,
484
507
(
2015
).
77.
Q.
Ma
and
H.-J.
Werner
, “
Scalable electron correlation methods. II. Parallel PNO-LMP2-F12 with near linear scaling in the molecular size
,”
J. Chem. Theory Comput.
11
,
5291
5304
(
2015
).
78.
M.
Schwilk
,
Q.
Ma
,
C.
Köppl
, and
H.-J.
Werner
, “
Scalable electron correlation methods. III. Efficient and accurate parallel local coupled cluster with pair natural orbitals (PNO-LCCSD)
,”
J. Chem. Theory Comput.
13
,
3650
3675
(
2017
).
79.
Q.
Ma
,
M.
Schwilk
,
C.
Köppl
, and
H.-J.
Werner
, “
Scalable electron correlation methods. IV. Parallel explicitly correlated local coupled cluster with pair natural orbitals (PNO-LCCSD-F12)
,”
J. Chem. Theory Comput.
13
,
4871
4896
(
2017
).
80.
Q.
Ma
and
H.-J.
Werner
, “
Scalable electron correlation methods. V. Parallel perturbative triples correction for explicitly correlated local coupled cluster with pair natural orbitals
,”
J. Chem. Theory Comput.
14
,
198
215
(
2018
).
81.
C.
Krause
and
H.-J.
Werner
, “
Scalable electron correlation methods. VI. Local spin-restricted open-shell second-order Møller-Plesset perturbation theory using pair natural orbitals: PNO-RMP2
,”
J. Chem. Theory Comput.
15
,
987
1005
(
2019
).
82.
Q.
Ma
and
H.-J.
Werner
, “
Scalable electron correlation methods. VII. Local open-shell coupled-cluster methods using pair natural orbitals: PNO-RCCSD and PNO-UCCSD
,”
J. Chem. Theory Comput.
16
,
3135
3151
(
2020
).
83.
Q.
Ma
and
H.-J.
Werner
, “
Scalable electron correlation methods. VIII. Explicitly correlated open-shell coupled-cluster with pair natural orbitals PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12
,”
J. Chem. Theory Comput.
17
,
902
926
(
2021
).
84.
F.
Menezes
,
D.
Kats
, and
H.-J.
Werner
, “
Local complete active space second-order perturbation theory using pair natural orbitals (PNO-CASPT2)
,”
J. Chem. Phys.
145
,
124115
(
2016
).
85.
D.
Kats
and
H.-J.
Werner
, “
Multi-state local complete active space second-order perturbation theory using pair natural orbitals (PNO-MS-CASPT2)
,”
J. Chem. Phys.
150
,
214107
(
2019
).
86.
B.
Helmich
and
C.
Hättig
, “
Local pair natural orbitals for excited states
,”
J. Chem. Phys.
135
,
214106
(
2011
).
87.
B.
Helmich
and
C.
Hättig
, “
A pair natural orbital implementation of the coupled cluster model CC2 for excitation energies
,”
J. Chem. Phys.
139
,
084114
(
2013
).
88.
M. S.
Frank
,
G.
Schmitz
, and
C.
Hättig
, “
Implementation of the iterative triples model CC3 for excitation energies using pair natural orbitals and Laplace transformation techniques
,”
J. Chem. Phys.
153
,
034109
(
2020
).
89.
A. K.
Dutta
,
F.
Neese
, and
R.
Izsák
, “
Towards a pair natural orbital coupled cluster method for excited states
,”
J. Chem. Phys.
145
,
034102
(
2016
).
90.
A. K.
Dutta
,
M.
Nooijen
,
F.
Neese
, and
R.
Izsák
, “
Exploring the accuracy of a low scaling similarity transformed equation of motion method for vertical excitation energies
,”
J. Chem. Theory Comput.
14
,
72
91
(
2018
).
91.
J. M.
Foster
and
S. F.
Boys
, “
Canonical configurational interaction procedure
,”
Rev. Mod. Phys.
32
,
300
302
(
1960
).
92.
D. A.
Kleier
,
T. A.
Halgren
,
J. H.
Hall
, and
W. N.
Lipscomb
, “
Localized molecular orbitals for polyatomic molecules. I. A comparison of the Edmiston-Ruedenberg and Boys localization methods
,”
J. Chem. Phys.
61
,
3905
3919
(
1974
).
93.
R. C.
Haddon
and
G. R. J.
Williams
, “
Calculation of localised molecular orbitals with the Foster–Boys criterion
,”
Chem. Phys. Lett.
42
,
453
455
(
1976
).
94.
J.
Pipek
and
P. G.
Mezey
,
J. Chem. Phys.
90
,
4916
(
1989
).
95.
S.
Lehtola
and
H.
Jónsson
, “
Unitary optimization of localized molecular orbitals
,”
J. Chem. Theory Comput.
9
,
5365
5372
(
2013
).
96.
B.
Jansík
,
S.
Høst
,
K.
Kristensen
, and
P.
Jørgensen
, “
Local orbitals by minimizing powers of the orbital variance
,”
J. Chem. Phys.
134
,
194104
(
2011
).
97.
I.-M.
Høyvik
,
B.
Jansik
, and
P.
Jørgensen
, “
Orbital localization using fourth central moment minimization
,”
J. Chem. Phys.
137
,
224114
(
2012
).
98.
I.-M.
Høyvik
,
B.
Jansík
, and
P.
Jørgensen
, “
Pipek–Mezey localization of occupied and virtual orbitals
,”
J. Comput. Chem.
34
,
1456
1462
(
2013
).
99.
I.-M.
Høyvik
,
B.
Jansik
, and
P.
Jørgensen
, “
Trust region minimization of orbital localization functions
,”
J. Chem. Theory Comput.
8
,
3137
3146
(
2012
).
100.
I.-M.
Høyvik
,
K.
Kristensen
,
B.
Jansik
, and
P.
Jørgensen
, “
The divide-expand-consolidate family of coupled cluster methods: Numerical illustrations using second order Møller-Plesset perturbation theory
,”
J. Chem. Phys.
136
,
014105
(
2012
).
101.
K.
Kristensen
,
M.
Ziółkowski
,
B.
Jansík
,
T.
Kjærgaard
, and
P.
Jørgensen
, “
A locality analysis of the divide–expand–consolidate coupled cluster amplitude equations
,”
J. Chem. Theory Comput.
7
,
1677
1694
(
2011
).
102.
T.
Kjærgaard
,
P.
Baudin
,
D.
Bykov
,
K.
Kristensen
and
P.
Jørgensen
, “
The divide-expand-consolidate coupled cluster scheme
,”
Wire
7
(
6
),
e1319
(
2017
).
103.
G. L.
Stoychev
,
A. A.
Auer
,
J.
Gauss
, and
F.
Neese
, “
DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings
,”
J. Chem. Phys.
154
,
164110
(
2021
).
104.
C.
Krause
and
H.-J.
Werner
, “
Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals
,”
Phys. Chem. Chem. Phys.
14
,
7591
7604
(
2012
).
105.
Q.
Ma
and
H. J.
Werner
, “
Explicitly correlated local coupled-cluster methods using pair natural orbitals
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1371
(
2018
).
106.
A. S.
Hansen
,
G.
Baardsen
,
E.
Rebolini
,
L.
Maschio
, and
T. B.
Pedersen
, “
Representation of the virtual space in extended systems—A correlation energy convergence study
,”
Mol. Phys.
118
,
e1733118
(
2020
).
107.
I.-M.
Høyvik
, “
The spectrum of the atomic orbital overlap matrix and the locality of the virtual electronic density matrix
,”
Mol. Phys.
118
,
e1765034
(
2020
).
108.
P.
Pinski
and
F.
Neese
, “
Analytical gradient for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory method (DLPNO-MP2)
,”
J. Chem. Phys.
150
,
164102
(
2019
).
109.
J.
Planelles
,
C.
Valdemoro
, and
J.
Karwowski
, “
Matrix elements of spin-adapted reduced Hamiltonians
,”
Phys. Rev. A
43
,
3392
3400
(
1991
).
110.
J.
Planelles
,
C.
Valdemoro
, and
J.
Karwowski
, “
Symmetric-group approach to the study of the traces of p-order reduced-density operators and of products of these operators
,”
Phys. Rev. A
41
,
2391
2397
(
1990
).
111.
W.
Kutzelnigg
, “
Quantum chemistry in Fock space. IV. The treatment of permutational symmetry. Spin-free diagrams with symmetrized vertices
,”
J. Chem. Phys.
82
,
4166
4186
(
1985
).
112.
W.
Kutzelnigg
and
D.
Mukherjee
,
J. Chem. Phys.
107
,
432
(
1997
).
113.
F.
Aquilante
,
T.
Bondo Pedersen
,
A.
Sánchez de Merás
, and
H.
Koch
, “
Fast noniterative orbital localization for large molecules
,”
J. Chem. Phys.
125
,
174101
(
2006
).
114.
W. J.
Taylor
, “
Localized molecular orbitals by a quadratic approximation to the method of steepest ascents
,”
J. Chem. Phys.
48
,
2385
2386
(
1968
).
115.
M.
Saitow
and
T.
Yanai
, “
A multireference coupled-electron pair approximation combined with complete-active space perturbation theory in local pair-natural orbital framework
,”
J. Chem. Phys.
152
,
114111
(
2020
).
116.
F.
Aquilante
,
J.
Autschbach
,
R. K.
Carlson
,
L. F.
Chibotaru
,
M. G.
Delcey
,
L.
De Vico
,
I. F.
Galván
,
N.
Ferré
,
L. M.
Frutos
,
L.
Gagliardi
,
M.
Garavelli
,
A.
Giussani
,
C. E.
Hoyer
,
G.
Li Manni
,
H.
Lischka
,
D.
Ma
,
P. Å.
Malmqvist
,
T.
Müller
,
A.
Nenov
,
M.
Olivucci
,
T. B.
Pedersen
,
D.
Peng
,
F.
Plasser
,
B.
Pritchard
,
M.
Reiher
,
I.
Rivalta
,
I.
Schapiro
,
J.
Segarra‐Martí
,
M.
Stenrup
,
D. G.
Truhlar
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
V. P.
Vysotskiy
,
O.
Weingart
,
F.
Zapata
, and
R.
Lindh
, “
MOLCAS 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table
,”
J. Comput. Chem.
37
,
506
541
(
2016
).
117.
I. F.
Galván
,
M.
Vacher
,
A.
Alavi
,
C.
Angeli
,
F.
Aquilante
,
J.
Autschbach
,
J. J.
Bao
,
S. I.
Bokarev
,
N. A.
Bogdanov
,
R. K.
Carlson
,
L. F.
Chibotaru
,
J.
Creutzberg
,
N.
Dattani
,
M. G.
Delcey
,
S. S.
Dong
,
A.
Dreuw
,
L.
Freitag
,
L. M.
Frutos
,
L.
Gagliardi
,
F.
Gendron
,
A.
Giussani
,
L.
González
,
G.
Grell
,
M.
Guo
,
C. E.
Hoyer
,
M.
Johansson
,
S.
Keller
,
S.
Knecht
,
G.
Kovačević
,
E.
Källman
,
G.
Li Manni
,
M.
Lundberg
,
Y.
Ma
,
S.
Mai
,
J. P.
Malhado
,
P. Å.
Malmqvist
,
P.
Marquetand
,
S. A.
Mewes
,
J.
Norell
,
M.
Olivucci
,
M.
Oppel
,
Q. M.
Phung
,
K.
Pierloot
,
F.
Plasser
,
M.
Reiher
,
A. M.
Sand
,
I.
Schapiro
,
P.
Sharma
,
C. J.
Stein
,
L. K.
Sørensen
,
D. G.
Truhlar
,
M.
Ugandi
,
L.
Ungur
,
A.
Valentini
,
S.
Vancoillie
,
V.
Veryazov
,
O.
Weser
,
T. A.
Wesołowski
,
P.-O.
Widmark
,
S.
Wouters
,
A.
Zech
,
J. P.
Zobel
, and
R.
Lindh
, “
OpenMolcas: From source code to insight
,”
J. Chem. Theory Comput.
15
,
5925
5964
(
2019
).
118.
M.
Saitow
,
Y.
Kurashige
, and
T.
Yanai
, “
Multireference configuration interaction theory using cumulant reconstruction with internal contraction of density matrix renormalization group wave function
,”
J. Chem. Phys.
139
,
044118
(
2013
).
119.
M.
Saitow
,
Y.
Kurashige
, and
T.
Yanai
, “
Fully internally contracted multireference configuration interaction theory using density matrix renormalization group: A reduced-scaling implementation derived by computer-aided tensor factorization
,”
J. Chem. Theory Comput.
11
,
5120
5131
(
2015
).
120.
BAGEL: Brilliantly Advanced General Electronic-structure Library, https://github.com/qsimulate-open/bagel; accessed on 11 October 2021.
121.
T.
Shiozaki
, “
BAGEL: Brilliantly advanced general electronic-structure library
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1331
(
2018
).
122.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
123.
F.
Weigend
, “
A fully direct RI-HF algorithm: Implementation, optimised auxiliary basis sets, demonstration of accuracy and efficiency
,”
Phys. Chem. Chem. Phys.
4
,
4285
4291
(
2002
).
124.
D.
Datta
,
S.
Kossmann
, and
F.
Neese
, “
Analytic energy derivatives for the calculation of the first-order molecular properties using the domain-based local pair-natural orbital coupled-cluster theory
,”
J. Chem. Phys.
145
,
114101
(
2016
).
125.
Y.
Guo
,
C.
Riplinger
,
U.
Becker
,
D. G.
Liakos
,
Y.
Minenkov
,
L.
Cavallo
, and
F.
Neese
,
J. Chem. Phys.
148
,
011101
(
2018
).
126.
M.
Saitow
and
F.
Neese
, “
Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory
,”
J. Chem. Phys.
149
,
034104
(
2018
).
127.
F.
Weigend
and
R.
Ahlrichs
, “
Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
,”
Phys. Chem. Chem. Phys.
7
,
3297
3305
(
2005
).
128.
F.
Weigend
, “
Accurate Coulomb-fitting basis sets for H to Rn
,”
Phys. Chem. Chem. Phys.
8
,
1057
1065
(
2006
).
129.
F.
Neese
, “
Software update: The ORCA program system, version 4.0
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
8
,
e1327
(
2018
).
130.
A. D.
Becke
, “
Density-functional thermochemistry. III. The role of exact exchange
,”
J. Chem. Phys.
98
,
5648
(
1993
).
131.
F.
Neese
,
F.
Wennmohs
,
A.
Hansen
, and
U.
Becker
, “
Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange
,”
Chem. Phys.
356
,
98
109
(
2009
).
132.
R.
Izsák
and
F.
Neese
, “
An overlap fitted chain of spheres exchange method
,”
J. Chem. Phys.
135
,
144105
(
2011
).
133.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
, “
A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
,”
J. Chem. Phys.
132
,
154104
(
2010
).
134.
S.
Grimme
,
S.
Ehrlich
, and
L.
Goerigk
, “
Effect of the damping function in dispersion corrected density functional theory
,”
J. Comput. Chem.
32
,
1456
1465
(
2011
).
135.
N. J.
Mayhall
and
M.
Head-Gordon
, “
Increasing spin-flips and decreasing cost: Perturbative corrections for external singles to the complete active space spin flip model for low-lying excited states and strong correlation
,”
J. Chem. Phys.
141
,
044112
(
2014
).
136.
K. P.
Hannon
,
C.
Li
, and
F. A.
Evangelista
, “
An integral-factorized implementation of the driven similarity renormalization group second-order multireference perturbation theory
,”
J. Chem. Phys.
144
,
204111
(
2016
).
137.
C.
Amovilli
,
B.
Mennucci
, and
F. M.
Floris
, “
MCSCF study of the SN2 Menshutkin reaction in aqueous solution within the polarizable continuum model
,”
J. Phys. Chem. B
102
,
3023
3028
(
1998
).
138.
M. D.
Halls
and
H. B.
Schlegel
, “
Chemistry inside carbon nanotubes: The Menshutkin SN2 reaction
,”
J. Phys. Chem. B
106
,
1921
1925
(
2002
).
139.
P.
Giacinto
,
F.
Zerbetto
,
A.
Bottoni
, and
M.
Calvaresi
, “
CNT-confinement effects on the Menshutkin SN2 reaction: The role of nonbonded interactions
,”
J. Chem. Theory Comput.
12
,
4082
4092
(
2016
).
140.
Z.-W.
Qu
,
A.
Hansen
, and
S.
Grimme
, “
Co–C bond dissociation energies in cobalamin derivatives and dispersion effects: Anomaly or just challenging?
,”
J. Chem. Theory Comput.
11
,
1037
1045
(
2015
).
141.
A.
Hansen
,
D. G.
Liakos
, and
F.
Neese
, “
Efficient and accurate local single reference correlation methods for high-spin open-shell molecules using pair natural orbitals
,”
J. Chem. Phys.
135
,
214102
(
2011
).
142.
I. J.
Kobylianskii
,
F. J.
Widner
,
B.
Kräutler
, and
P.
Chen
, “
Co–C bond energies in adenosylcobinamide and methylcobinamide in the gas phase and in silico
,”
J. Am. Chem. Soc.
135
,
13648
13651
(
2013
).

Supplementary Material

You do not currently have access to this content.