Understanding the structure and wettability of monolayer water is essential for revealing the mechanisms of nucleation, growth, and chemical reactivity at interfaces. We have investigated the wetting layer formation of water (ice) on the graphite (0001) surface using a combination of low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). At around monolayer coverages, the LEED pattern showed a (2 × 2) periodicity and STM revealed a hydrogen-bonded hexagonal network. The lattice constant was about 9% larger than that for ice Ih/Ic crystals, and the packing density was 0.096 Å−2. These results indicate that an extended ice network is formed on graphite, different from that on metal surfaces. Graphite is hydrophobic under ambient conditions due to the airborne contaminant but is considered inherently hydrophilic for a clean surface. In this study, the hydrophilic nature of the clean surface has been investigated from a molecular viewpoint. The formation of a well-ordered commensurate monolayer supports that the interaction of water with graphite is not negligible so that a commensurate wetting layer is formed at the weak substrate–molecule interaction limit.

1.
V. F.
Petrenko
and
R. W.
Whitworth
,
Physics of Ice
(
Oxford Unversity Press
,
New York
,
1999
).
2.
P. A.
Thiel
and
T. E.
Madey
, “
The interaction of water with solid surfaces: Fundamental aspects
,”
Surf. Sci. Rep.
7
,
211
385
(
1987
).
3.
M.
Henderson
, “
The interaction of water with solid surfaces: Fundamental aspects revisited
,”
Surf. Sci. Rep.
46
,
1
308
(
2002
).
4.
A.
Hodgson
and
S.
Haq
, “
Water adsorption and the wetting of metal surfaces
,”
Surf. Sci. Rep.
64
,
381
451
(
2009
).
5.
A.
Verdaguer
,
G. M.
Sacha
,
H.
Bluhm
, and
M.
Salmeron
, “
Molecular structure of water at interfaces: Wetting at the nanometer scale
,”
Chem. Rev.
106
,
1478
1510
(
2006
).
6.
J.
Carrasco
,
A.
Hodgson
, and
A.
Michaelides
, “
A molecular perspective of water at metal interfaces
,”
Nat. Mater.
11
,
667
674
(
2012
).
7.
S.
Maier
and
M.
Salmeron
, “
How does water wet a surface?
,”
Acc. Chem. Res.
48
,
2783
2790
(
2015
).
8.
D. L.
Doering
and
T. E.
Madey
, “
The adsorption of water on clean and oxygen-dosed Ru(011)
,”
Surf. Sci.
123
,
305
337
(
1982
).
9.
S.
Maier
,
B. A. J.
Lechner
,
G. A.
Somorjai
, and
M.
Salmeron
, “
Growth and structure of the first layers of ice on Ru(0001) and Pt(111)
,”
J. Am. Chem. Soc.
138
,
3145
3151
(
2016
).
10.
S.
Nie
,
P. J.
Feibelman
,
N. C.
Bartelt
, and
K.
Thürmer
, “
Pentagons and heptagons in the first water layer on Pt(111)
,”
Phys. Rev. Lett.
105
,
026102
(
2010
).
11.
R.
Ma
,
D.
Cao
,
C.
Zhu
,
Y.
Tian
,
J.
Peng
,
J.
Guo
,
J.
Chen
,
X.-Z.
Li
,
J. S.
Francisco
,
X. C.
Zeng
,
L.-M.
Xu
,
E.-G.
Wang
, and
Y.
Jiang
, “
Atomic imaging of the edge structure and growth of a two-dimensional hexagonal ice
,”
Nature
577
,
60
63
(
2020
).
12.
G. A.
Kimmel
,
J.
Matthiesen
,
M.
Baer
,
C. J.
Mundy
,
N. G.
Petrik
,
R. S.
Smith
,
Z.
Dohnálek
, and
B. D.
Kay
, “
No confinement needed: Observation of a metastable hydrophobic wetting two-layer ice on graphene
,”
J. Am. Chem. Soc.
131
,
12838
12844
(
2009
).
13.
P. J.
Feibelman
, “
Partial dissociation of water on Ru(0001)
,”
Science
295
,
99
102
(
2002
).
14.
S.
Maier
,
I.
Stass
,
J. I.
Cerdá
, and
M.
Salmeron
, “
Unveiling the mechanism of water partial dissociation on Ru(0001)
,”
Phys. Rev. Lett.
112
,
126101
(
2014
).
15.
N.
Kawakami
,
K.
Iwata
,
A.
Shiotari
, and
Y.
Sugimoto
, “
Intrinsic reconstruction of ice-I surfaces
,”
Sci. Adv.
6
,
eabb7986
(
2020
).
16.
A.
Kozbial
,
F.
Zhou
,
Z.
Li
,
H.
Liu
, and
L.
Li
, “
Are graphitic surfaces hydrophobic?
,”
Acc. Chem. Res.
49
(
12
),
2765
2773
(
2016
).
17.
Z.
Li
,
Y.
Wang
,
A.
Kozbial
,
G.
Shenoy
,
F.
Zhou
,
R.
McGinley
,
P.
Ireland
,
B.
Morganstein
,
A.
Kunkel
,
S. P.
Surwade
,
L.
Li
, and
H.
Liu
, “
Effect of airborne contaminants on the wettability of supported graphene and graphite
,”
Nat. Mater.
12
,
925
931
(
2013
).
18.
G.
Algara-Siller
,
O.
Lehtinen
,
F. C.
Wang
,
R. R.
Nair
,
U.
Kaiser
,
H. A.
Wu
,
A. K.
Geim
, and
I. V.
Grigorieva
, “
A Square ice in graphene nanocapillaries
,”
Nature
519
,
443
445
(
2015
).
19.
W.
Zhou
,
K.
Yin
,
C.
Wang
,
Y.
Zhang
,
T.
Xu
,
A.
Borisevich
,
L.
Sun
,
J. C.
Idrobo
,
M. F.
Chisholm
,
S. T.
Pantelides
,
R. F.
Klie
, and
A. R.
Lupini
, “
The observation of square ice in graphene questioned
,”
Nature
528
,
E1
E2
(
2015
).
20.
D.
Chakarov
,
L.
Österlund
, and
B.
Kasemo
, “
Water adsorption on graphite (0001)
,”
Vacuum
46
,
1109
1112
(
1995
).
21.
D.
Chakarov
and
B.
Kasemo
, “
Photoinduced crystallization of amorphous ice films on graphite
,”
Phys. Rev. Lett.
81
,
5181
(
1998
).
22.
A. S.
Bolina
,
A. J.
Wolff
, and
W. A.
Brown
, “
Reflection absorption infrared spectroscopy and temperature-programmed desorption studies of the adsorption and desorption of amorphous and crystalline water on a graphite surface
,”
J. Phys. Chem. B
109
,
16836
16845
(
2005
).
23.
K.
Nagai
, “
Rate expression incorporating interaction between reactants: Application to the zero-order desorption spectra
,”
Phys. Rev. Lett.
54
,
2159
(
1985
).
24.
R.
Souda
and
T.
Aizawa
, “
Crystallization kinetics of water on graphite
,”
Phys. Chem. Chem. Phys.
20
,
21856
21863
(
2018
).
25.
X.
Zhang
,
J.-Y.
Xu
,
Y.-B.
Tu
,
K.
Sun
,
M.-L.
Tao
,
Z.-H.
Xiong
,
K.-H.
Wu
,
J.-Z.
Wang
,
Q.-K.
Xue
, and
S.
Meng
, “
Hexagonal monolayer ice without shared edges
,”
Phys. Rev. Lett.
121
,
256001
(
2018
).
26.
Y.-R.
Wang
,
J.-Y.
Xu
,
C.-K.
Ma
,
M.-X.
Shi
,
Y.-B.
Tu
,
K.
Sun
,
S.
Meng
, and
J.-Z.
Wang
, “
Ice II-like monolayer ice grown on graphite surface
,”
J. Phys. Chem. C
123
,
20297
20303
(
2019
).
27.
Y.
Xu
,
X.
Xuan
,
Z.
Zhang
, and
W.
Guo
, “
Helical monolayer ice
,”
J. Phys. Chem. Lett.
11
,
3860
3865
(
2020
).
28.
T.
Yamada
,
M.
Shibuta
,
Y.
Ami
,
Y.
Takano
,
A.
Nonaka
,
K.
Miyakubo
, and
T.
Munakata
, “
Novel growth of naphthalene overlayer on Cu(111) studied by STM, LEED, and 2PPE
,”
J. Phys. Chem. C
114
,
13334
13339
(
2010
).
29.
R.
Forker
,
J.
Peuker
,
M.
Meissner
,
F.
Sojka
,
T.
Ueba
,
T.
Yamada
,
H. S.
Kato
,
T.
Munakata
, and
T.
Fritz
, “
The complex polymorphism and thermodynamic behavior of a seemingly simple system: Naphthalene on Cu(111)
,”
Langmuir
30
,
14163
14170
(
2014
).
30.
F.
Sojka
,
M.
Meissner
,
T.
Yamada
,
T.
Munakata
,
R.
Forker
, and
T.
Fritz
, “
Naphthalene’s six shades on graphite: A detailed study on the polymorphism of an apparently simple system
,”
J. Phys. Chem. C
120
,
22972
22978
(
2016
).
31.
T.
Yamada
,
S.
Tamamori
,
H.
Okuyama
, and
T.
Aruga
, “
Anisotropic water chain growth on Cu(110) observed with scanning tunneling microscopy
,”
Phys. Rev. Lett.
96
,
036105
(
2006
).
32.
F.
Sojka
,
M.
Meissner
,
C.
Zwick
,
R.
Forker
, and
T.
Fritz
, “
Determination and correction of distortions and systematic errors in low-energy electron diffraction
,”
Rev. Sci. Instrum.
84
,
015111
(
2013
).
33.
T.
Yamada
,
M.
Isobe
,
M.
Shibuta
,
H. S.
Kato
, and
T.
Munakata
, “
Spectroscopic investigation of unoccupied states in nano- and macroscopic scale: Naphthalene overlayers on highly oriented pyrolytic graphite studied by combination of scanning tunneling microscopy and two-photon photoemission
,”
J. Phys. Chem. C
118
,
1035
1041
(
2014
).
34.
T.
Yamada
,
K.
Araragi
,
H. S.
Kato
, and
T.
Munakata
, “
Structural characterization and photoluminescence properties of monolayer perylene on graphite surface
,”
J. Phys. Chem. C
124
,
12485
12491
(
2020
).
35.
K.
Thürmer
and
N. C.
Bartelt
, “
Growth of multilayer ice films and the formation of cubic ice imaged with STM
,”
Phys. Rev. B
77
,
195425
(
2008
).
36.
T. K.
Shimizu
,
A.
Mugarza
,
J. I.
Cerdá
,
M.
Heyde
,
Y.
Qi
,
U. D.
Schwarz
,
D. F.
Ogletree
, and
M.
Salmeron
, “
Surface species formed by the adsorption and dissociation of water molecules on a Ru(0001) surface containing a small coverage of carbon atoms studied by scanning tunneling microscopy
,”
J. Phys. Chem. C
112
,
7445
7454
(
2008
).
37.
A.
Mugarza
,
T. K.
Shimizu
,
D.
Frank Ogletree
, and
M.
Salmeron
, “
Chemical reactions of water molecules on Ru(0001) induced by selective excitation of vibrational modes
,”
Surf. Sci.
603
,
2030
2036
(
2009
).
38.
E.
Fomin
,
M.
Tatarkhanov
,
T.
Mitsui
,
M.
Rose
,
D. F.
Ogletree
, and
M.
Salmeron
, “
Vibrationally assisted diffusion of H2O and D2O on Pd(111)
,”
Surf. Sci.
600
,
542
546
(
2006
).
39.
K.
Oura
,
V. G.
Lifshits
,
A. A.
Saranin
,
A. V.
Zotov
, and
M.
Katayama
,
Surface Science: An Introduction
, Advanced Texts in Physics (
Springer
,
2003
).
40.
D.
Eisenberg
and
W.
Kauzmann
,
The Structure and Properties of Water
(
Oxford University Press
,
London
,
1969
).
41.
D.
Feller
and
K. D.
Jordan
, “
Estimating the strength of the water/single-layer graphite interaction
,”
J. Phys. Chem. A
104
,
9971
9975
(
2000
).
42.
M. P.
Seah
and
W. A.
Dench
, “
Quantitative electron spectroscopy of surfaces: A standard data base for electron inelastic mean free paths in solids
,”
Surf. Interface Anal.
1
,
2
11
(
1979
).
43.

Due to the reported variances of the ice film thicknesses on the surface,11,25,44–46 the density of ice layers on graphite is not determined uniquely. To estimate the IMFP value that is independent of the material’s density, we adopted Eq. (5) in Ref. 42 optimized for element as a rule of thumb.

44.
M.
Mehlhorn
and
K.
Morgenstern
, “
Height analysis of amorphous and crystalline ice structures on Cu(111) in scanning tunneling microscopy
,”
New J. Phys.
11
,
093015
(
2009
).
45.
C.-Y.
Ruan
,
V. A.
Lobastov
,
F.
Vigliotti
,
S.
Chen
, and
A. H.
Zewail
, “
Ultrafast electron crystallography of interfacial water
,”
Science
304
,
80
84
(
2004
).
46.
P.
Cabrera Sanfelix
,
S.
Holloway
,
K. W.
Kolasinski
, and
G. R.
Darling
, “
The structure of water on the (0001) surface of graphite
,”
Surf. Sci.
532–535
,
166
172
(
2003
).
47.

This exposure value has a variance when we adopted Eq. (5) of Ref. 42 obtained for inorganic materials (0.6–1.7 L), organic materials (0.7–1.9 L), and adsorbed gases (1.0–2.6 L), respectively. However, as a rule of thumb, we consider that all of these exposure values correspond to the coverage around a monolayer with a commensurate (2 × 2) structure.

48.
L. G.
Dowell
and
A. P.
Rinfret
, “
Low-temperature forms of ice as studied by X-ray diffraction
,”
Nature
188
,
1144
1148
(
1960
).
49.
T. N. H.
Nguyen
,
D.
Solonenko
,
O.
Selyshchev
,
P.
Vogt
,
D. R. T.
Zahn
,
S.
Yochelis
,
Y.
Paltiel
, and
C.
Tegenkamp
, “
Helical ordering of α-l-Polyalanine molecular layers by interdigitation
,”
J. Phys. Chem. C
123
,
612
617
(
2019
).
50.
N. T. N.
Ha
,
T. G.
Gopakumar
,
R.
Gutzler
,
M.
Lackinger
,
H.
Tang
, and
M.
Hietschold
, “
Influence of solvophobic effects on self-assembly of trimesic acid at the liquid-solid interface
,”
J. Phys. Chem. C
114
,
3531
3536
(
2010
).
51.
O.
Leenaerts
,
B.
Partoens
, and
F. M.
Peeters
, “
Water on graphene: Hydrophobicity and dipole moment using density functional theory
,”
Phys. Rev. B
79
,
235440
(
2009
).
52.
G.
Cicero
,
J. C.
Grossman
,
E.
Schwegler
,
F.
Gygi
, and
G.
Galli
, “
Water confined in nanotubes and between graphene sheets: A first principle study
,”
J. Am. Chem. Soc.
130
,
1871
1878
(
2008
).
53.
I.
Hamada
, “
Adsorption of water on graphene: A van der Waals density functional study
,”
Phys. Rev. B
86
,
195436
(
2012
).
54.
G.
Tocci
,
L.
Joly
, and
A.
Michaelides
, “
Friction of water on graphene and hexagonal boron nitride from ab initio methods: Very different slippage despite very similar interface structures
,”
Nano Lett.
14
,
6872
6877
(
2014
).
55.
S.
Singla
,
E.
Anim-Danso
,
A. E.
Islam
,
Y.
Ngo
,
S. S.
Kim
,
R. R.
Naik
, and
A.
Dhinojwala
, “
Insight on structure of water and ice next to graphene using surface-sensitive spectroscopy
,”
ACS Nano
11
,
4899
4906
(
2017
).
56.
T.
Ohto
,
H.
Tada
, and
Y.
Nagata
, “
Structure and dynamics of water at water-graphene and water-hexagonal boron-nitride sheet interfaces revealed by ab initio sum-frequency generation spectroscopy
,”
Phys. Chem. Chem. Phys.
20
,
12979
12985
(
2018
).
57.
R.
Souda
, “
Nanoconfinement effects of water on hydrophilic and hydrophobic substrates at cryogenic temperatures
,”
J. Phys. Chem. C
116
,
20895
20901
(
2012
).
58.
T.
Sugimoto
,
N.
Aiga
,
Y.
Otsuki
,
K.
Watanabe
, and
Y.
Matsumoto
, “
Emergent high-Tc ferroelectric ordering of strongly correlated and frustrated protons in a heteroepitaxial ice film
,”
Nat. Phys.
12
,
1063
1068
(
2016
).
59.
S.
Meng
,
E. G.
Wang
, and
S.
Gao
, “
Water adsorption on metal surfaces: A general picture from density functional theory studies
,”
Phys. Rev. B
69
,
195404
(
2004
).
60.
I.
Hamada
and
Y.
Morikawa
, “
Density-Functional analysis of hydrogen on Pt(111): Electric field, solvent, and coverage effects
,”
J. Phys. Chem. C
112
,
10889
10898
(
2008
).
61.
A.
Glebov
,
A. P.
Graham
,
A.
Menzel
,
J. P.
Toennies
, and
P.
Senet
, “
A helium atom scattering study of the structure and phonon dynamics of the ice surface
,”
J. Chem. Phys.
112
,
11011
(
2000
).
62.
N.
Materer
,
U.
Starke
,
A.
Barbieri
,
M. A.
Van Hove
,
G. A.
Somorjai
,
G.-J.
Kroes
, and
C.
Minot
, “
Molecular surface structure of ice(0001): Dynamical low-energy electron diffraction, total-energy calculations and molecular dynamics simulations
,”
Surf. Sci.
381
,
190
210
(
1997
).
63.
T.
Yamada
,
H.
Okuyama
,
T.
Aruga
, and
M.
Nishijima
, “
Vibrational spectroscopy of crystalline multilayer ice: Surface modes in the intermolecular-vibration region
,”
J. Phys. Chem. B
107
,
13962
13968
(
2003
).
64.
G.
Zimbitas
,
S.
Haq
, and
A.
Hodgson
, “
The structure and crystallization of thin water films on Pt(111)
,”
J. Chem. Phys.
123
,
174701
(
2005
).

Supplementary Material

You do not currently have access to this content.