Strong Coulomb repulsion between the two charges in a square planar mixed-valence cell in quantum cellular automata (QCA) allows us to encode the binary information in the two energetically beneficial diagonal distributions of the electronic density. In this article, we pose a question: to what extent is this condition obligatory for the design of the molecular cell? To answer this question, we examine the ability to use a square-planar cell composed of one-electron mixed valence dimers to function in QCA in a general case when the intracell Coulomb interaction U is not supposed to be extremely strong, which means that it is comparable with the characteristic electron transfer energy (violated strong U limit). Using the two-mode vibronic model treated within the semiclassical (adiabatic) and quantum-mechanical approaches, we demonstrate that strong vibronic coupling is able to create a considerable barrier between the two diagonal-type charge configurations, thus ensuring bistability and polarizability of the cells even if the Coulomb barrier is not sufficient. The cases of weak and moderate Coulomb repulsion and strong vibronic coupling are exemplified by consideration of the cation radicals of the two polycyclic derivatives of norbornadiene [C12H12]+ and [C17H16]+ with the terminal C=C chromophores playing the role of redox sites. By using the detailed ab initio data, we reveal the main characteristics of the bi-dimeric cells composed of these molecules and illustrate the pronounced effect of the vibronic recovery clearly manifesting itself in the shape of the cell–cell response function. Revealing such “vibronic recovery” of strong localization when the strong U limit is violated suggests a way to a significant expansion of the class of molecular systems suitable as QCA cells.

1.
C. S.
Lent
, “
Bypassing the transistor paradigm
,”
Science
288
,
1597
1599
(
2000
).
2.
M.
Lieberman
,
S.
Chellamma
,
B.
Varughese
,
Y.
Wang
,
C.
Lent
,
G. H.
Bernstein
,
G.
Snider
, and
F. C.
Peiris
, “
Quantum-dot cellular automata at a molecular scale
,”
Ann. N. Y. Acad. Sci.
960
,
225
239
(
2002
).
3.
C. S.
Lent
,
B.
Isaksen
, and
M.
Lieberman
, “
Molecular quantum-dot cellular automata
,”
J. Am. Chem. Soc.
125
,
1056
1063
(
2003
).
4.
Y.
Lu
and
C. S.
Lent
, “
Theoretical study of molecular quantum dot cellular automata
,”
J. Comput. Electron.
4
,
115
118
(
2005
).
5.
Y.
Lu
and
C. S.
Lent
, “
A metric for characterizing the bistability of molecular quantum-dot cellular automata
,”
Nanotechnology
19
,
155703
(
2008
).
6.
Y.
Lu
,
R.
Quardokus
,
C. S.
Lent
,
F.
Justaud
,
C.
Lapinte
, and
S. A.
Kandel
, “
Charge localization in isolated mixed-valence complexes: An STM and theoretical study
,”
J. Am. Chem. Soc.
132
,
13519
13524
(
2010
).
7.
Y.
Lu
and
C. S.
Lent
, “
Field-induced electron localization: Molecular quantum-dot cellular automata and the relevance of Robin–Day classification
,”
Chem. Phys. Lett.
633
,
52
57
(
2015
).
8.
Y.
Ardesi
,
A.
Pulimeno
,
M.
Graziano
,
F.
Riente
, and
G.
Piccinini
, “
Effectiveness of molecules for quantum cellular automata as computing devices
,”
J. Low Power Electron. Appl.
8
,
24
43
(
2018
).
9.
C. S.
Lent
,
P. D.
Tougaw
,
W.
Porod
, and
G. H.
Bernstein
, “
Quantum cellular automata
,”
Nanotechnology
4
,
49
57
(
1993
).
10.
C. S.
Lent
,
P. D.
Tougaw
, and
W.
Porod
, “
Bistable saturation in coupled quantum dots for quantum cellular automata
,”
Appl. Phys. Lett.
62
,
714
716
(
1993
).
11.
C. S.
Lent
and
P. D.
Tougaw
, “
Lines of interacting quantum-dot cells: A binary wire
,”
J. Appl. Phys.
74
,
6227
6233
(
1993
).
12.
P. D.
Tougaw
and
C. S.
Lent
, “
Logical devices implemented using quantum cellular automata
,”
J. Appl. Phys.
75
,
1818
1825
(
1994
).
13.
C. S.
Lent
and
P. D.
Tougaw
, “
A device architecture for computing with quantum dots
,”
Proc. IEEE
85
,
541
557
(
1997
).
14.
W.
Porod
,
C.
Lent
,
G. H.
Bernstein
,
A. O.
Orlov
,
I.
Hamlani
,
G. L.
Snider
, and
J. L.
Merz
, “
Quantum-dot cellular automata: Computing with coupled quantum dots
,”
Int. J. Electron.
86
,
549
590
(
1999
).
15.
T.
Ito
,
T.
Hamaguchi
,
H.
Nagino
,
T.
Yamaguchi
,
J.
Washington
, and
C. P.
Kubiak
, “
Effects of rapid intramolecular electron transfer on vibrational spectra
,”
Science
277
,
660
663
(
1997
).
16.
V. C.
Lau
,
L. A.
Berben
, and
J. R.
Long
, “
[(Cyclen)4Ru4(pz)4]9+: A Creutz-Taube square
,”
J. Am. Chem. Soc.
124
,
9042
9043
(
2002
).
17.
H.
Qi
,
S.
Sharma
,
Z.
Li
,
G. L.
Snider
,
A. O.
Orlov
,
C. S.
Lent
, and
T. P.
Fehlner
, “
Molecular quantum cellular automata cells. Electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata
,”
J. Am. Chem. Soc.
125
,
15250
15259
(
2003
).
18.
J.
Jiao
,
G. J.
Long
,
F.
Grandjean
,
A. M.
Beatty
, and
T. P.
Fehlner
, “
Building blocks for the molecular expression of quantum cellular automata. Isolation and characterization of a covalently bonded square array of two ferrocenium and two ferrocene complexes
,”
J. Am. Chem. Soc.
125
,
7522
7523
(
2003
).
19.
J.
Jiao
,
G. J.
Long
,
L.
Rebbouh
,
F.
Grandjean
,
A. M.
Beatty
, and
T. P.
Fehlner
, “
Properties of a mixed-valence (FeII)2(FeIII)2 square cell for utilization in the quantum cellular automata paradigm for molecular electronics
,”
J. Am. Chem. Soc.
127
,
17819
17831
(
2005
).
20.
Y.
Zhao
,
D.
Guo
,
Y.
Liu
,
C.
He
, and
C.
Duan
, “
A mixed-valence (FeII)2(FeIII)2 square for molecular expression of quantum cellular automata
,”
Chem. Commun.
2008
,
5725
5727
.
21.
V. N.
Nemykin
,
G. T.
Rohde
,
C. D.
Barrett
,
R. G.
Hadt
,
C.
Bizzarri
,
P.
Galloni
,
B.
Floris
,
I.
Nowik
,
R. H.
Herber
,
A. G.
Marrani
,
R.
Zanoni
, and
N. M.
Loim
, “
Electron-transfer processes in metal-free tetraferrocenylporphyrin. Understanding internal interactions to access mixed-valence states potentially useful for quantum cellular automata
,”
J. Am. Chem. Soc.
131
,
14969
14978
(
2009
).
22.
A.
Burgun
,
F.
Gendron
,
P. A.
Schauer
,
B. W.
Skelton
,
P. J.
Low
,
K.
Costuas
,
J.-F.
Halet
,
M. I.
Bruce
, and
C.
Lapinte
, “
Straightforward access to tetrametallic complexes with a square array by oxidative dimerization of organometallic wires
,”
Organometallics
32
,
5015
5025
(
2013
).
23.
B.
Schneider
,
S.
Demeshko
,
S.
Neudeck
,
S.
Dechert
, and
F.
Meyer
, “
Mixed-spin [2 × 2] Fe4 grid complex optimized for quantum cellular automata
,”
Inorg. Chem.
52
,
13230
13237
(
2013
).
24.
J. A.
Christie
,
R. P.
Forrest
,
S. A.
Corcelli
,
N. A.
Wasio
,
R. C.
Quardokus
,
R.
Brown
,
S. A.
Kandel
,
Y.
Lu
,
C. S.
Lent
, and
K. W.
Henderson
, “
Synthesis of a neutral mixed-valence diferrocenyl carborane for molecular quantum-dot cellular automata applications
,”
Angew. Chem.
127
,
15668
15671
(
2015
).
25.
X.
Wang
,
L.
Yu
,
V. S. S.
Inakollu
,
X.
Pan
,
J.
Ma
, and
H.
Yu
, “
Molecular quantum-dot cellular automata based on diboryl radical anions
,”
J. Phys. Chem. C
122
,
2454
2460
(
2018
).
26.
R.
Makhoul
,
P.
Hamon
,
T.
Roisnel
,
J. R.
Hamon
, and
C.
Lapinte
, “
A tetrairon dication featuring tetraethynylbenzene bridging ligand: A molecular prototype of quantum dot cellular automata
,”
Chem. - Eur. J.
26
,
8368
8371
(
2020
).
27.
T.
Groizard
,
S.
Kahlal
, and
J.-F.
Halet
, “
Zwitterionic mixed-valence species for the design of neutral clocked molecular quantum-dot cellular automata
,”
Inorg. Chem.
59
,
15772
15779
(
2020
).
28.
S. B.
Braun-Sand
and
O.
Wiest
, “
Theoretical studies of mixed valence transition metal complexes for molecular computing
,”
J. Phys. Chem. A
107
,
285
291
(
2003
).
29.
S. B.
Braun-Sand
and
O.
Wiest
, “
Biasing mixed-valence transition metal complexes in search of bistable complexes for molecular computing
,”
J. Phys. Chem. B
107
,
9624
9628
(
2003
).
30.
R.
Wang
,
A.
Pulimeno
,
M. R.
Roch
,
G.
Turvani
,
G.
Piccinini
, and
M.
Graziano
, “
Effect of a clock system on bis-ferrocene molecular QCA
,”
IEEE Trans. Nanotechnol.
15
,
574
582
(
2016
).
31.
Y.
Lu
,
M.
Liu
, and
C.
Lent
, “
Molecular quantum-dot cellular automata: From molecular structure to circuit dynamics
,”
J. Appl. Phys.
102
,
034311
(
2007
).
32.
B.
Tsukerblat
,
A.
Palii
, and
J. M.
Clemente-Juan
, “
Self-trapping of charge polarized states in four-dot molecular quantum cellular automata: Bi-electronic tetrameric mixed valence species
,”
Pure Appl. Chem.
87
,
271
282
(
2015
).
33.
B.
Tsukerblat
,
A.
Palii
,
J. M.
Clemente-Juan
, and
E.
Coronado
, “
Mixed-valence molecular four-dot unit for quantum cellular automata: Vibronic self-trapping and cell-cell response
,”
J. Chem. Phys.
143
,
134307
134315
(
2015
).
34.
A.
Palii
,
B.
Tsukerblat
,
J. M.
Clemente-Juan
, and
E.
Coronado
, “
Spin-switching in molecular quantum cellular automata based on mixed-valence tetrameric units
,”
J. Phys. Chem.
120
,
16994
17005
(
2016
).
35.
A.
Palii
and
B.
Tsukerblat
, “
Tuning of quantum entanglement in molecular quantum cellular automata based on mixedvalence tetrameric units
,”
Dalton Trans.
45
,
16661
16672
(
2016
).
36.
J. M.
Clemente-Juan
,
A.
Palii
,
E.
Coronado
, and
B.
Tsukerblat
, “
Mixed-valence molecular unit for quantum cellular automata: Beyond the Born-Oppenheimer paradigm through the symmetry assisted vibronic approach
,”
J. Chem. Theory Comput.
12
,
3545
3560
(
2016
).
37.
A.
Palii
,
A.
Rybakov
,
S.
Aldoshin
, and
B.
Tsukerblat
, “
Semiclassical versus quantum mechanical vibronic approach in the analysis of the functional characteristics of molecular quantum cellular automata
,”
Phys. Chem. Chem. Phys.
21
,
16751
16761
(
2019
).
38.
A.
Palii
,
S.
Zilberg
,
A.
Rybakov
, and
B.
Tsukerblat
, “
Double-dimeric versus tetrameric cells for quantum cellular automata: A semiempirical approach to evaluation of cell–cell responses combined with quantum-chemical modeling of molecular structures
,”
J. Phys. Chem. C
123
,
22614
22623
(
2019
).
39.
A.
Palii
,
S.
Aldoshin
,
S.
Zilberg
, and
B.
Tsukerblat
, “
A parametric two-mode vibronic model of a dimeric mixed-valence cell for molecular quantum cellular automata and computational ab initio verification
,”
Phys. Chem. Chem. Phys.
22
,
25982
25999
(
2020
).
40.
A.
Palii
,
J. M.
Clemente-Juan
,
S.
Aldoshin
,
D.
Korchagin
,
A.
Rybakov
,
S.
Zilberg
, and
B.
Tsukerblat
, “
Mixed-valence magnetic molecular cell for quantum cellular automata: Prospects of designing multifunctional devices through exploration of double exchange
,”
J. Phys. Chem. C
124
,
25602
25614
(
2020
).
41.
B.
Tsukerblat
,
A.
Palii
, and
S.
Aldoshin
, “
Molecule based materials for quantum cellular automata: A short overview and challenging problems
,”
Isr. J. Chem.
60
,
527
543
(
2020
).
42.
A.
Palii
,
J. M.
Clemente-Juan
,
A.
Rybakov
,
S.
Aldoshin
, and
B.
Tsukerblat
, “
Exploration of the double exchange in quantum cellular automata: Proposal for a new class of cells
,”
Chem. Commun.
56
,
10682
10685
(
2020
).
43.
A.
Palii
,
S.
Aldoshin
, and
B.
Tsukerblat
, “
Towards the design of molecular cells for quantum cellular automata: Critical reconsideration of the parameter regime for achieving functionality
,”
Dalton Trans.
51
,
286
302
(
2022
).
44.
S. S.
Pidaparthi
and
C. S.
Lent
, “
Molecular reorganization energy in quantum-dot cellular automata switching
,”
J. Appl. Phys.
131
,
044502
(
2022
).
45.
S. B.
Piepho
,
E. R.
Krausz
, and
P. N.
Schatz
, “
Vibronic coupling model for calculation of mixed valence absorption profiles
,”
J. Am. Chem. Soc.
100
,
2996
3005
(
1978
).
46.
K.
Prassides
and
P. N.
Schatz
, “
Vibronic coupling model for mixed valence compounds: Extension to the multimode case
,”
J. Phys. Chem.
93
,
83
89
(
1989
).
47.
K. Y.
Wong
, “
Charge-transfer-induced IR absorptions in mixed valence compounds
,”
Inorg. Chem.
23
,
1285
1290
(
1984
).
48.
K. Y.
Wong
and
P. N.
Schatz
, “
A dynamic model for mixed-valence compounds
,”
Prog. Inorg. Chem.
28
,
369
449
(
1981
).
49.
S. B.
Piepho
, “
Vibronic coupling model for the calculation of mixed-valence line shapes: The interdependence of vibronic and MO effects
,”
J. Am. Chem. Soc.
110
,
6319
6326
(
1988
).
50.
S. B.
Piepho
, “
Vibronic coupling model for the calculation of mixed-valence line shapes: A new look at the Creutz-Taube ion
,”
J. Am. Chem. Soc.
112
,
4197
4206
(
1990
).
51.
S. A.
Borshch
,
I. N.
Kotov
, and
I. B.
Bersuker
, “
Electron delocalization in trinuclear mixed-valence clusters
,”
Chem. Phys. Lett.
89
,
381
384
(
1982
).
52.
J. P.
Launay
and
F.
Babonneau
, “
Semiclassical model of a trinuclear mixed valence system
,”
Chem. Phys.
67
,
295
300
(
1982
).
53.
S. A.
Borshch
and
L. F.
Chibotaru
, “
Electron delocalization in trinuclear iron-sulfur clusters from Desulfovibrio gigas
,”
Chem. Phys.
135
,
375
380
(
1989
).
54.
S. A.
Borshch
,
E. L.
Bominaar
,
G.
Blondin
, and
J. J.
Girerd
, “
Double exchange and vibronic coupling in mixed valence systems. Origin of the broken-symmetry ground state of [Fe3S4]0 cores in proteins and models
,”
J. Am. Chem. Soc.
115
,
5155
5168
(
1993
).
55.
A. J.
Marks
and
K.
Prassides
, “
Vibronic effects in a model four center, one-electron mixed-valence system
,”
New J. Chem.
17
,
59
65
(
1993
).
56.
A. J.
Marks
and
K.
Prassides
, “
Exchange and vibronic interactions in a tetrahedral, five-electron mixed-valence cluster
,”
J. Chem. Phys.
98
,
4805
4813
(
1993
).
57.
S. I.
Boldyrev
,
V. Y.
Gamurar
,
B. S.
Tsukerblat
, and
A. V.
Palii
, “
Vibronic interaction in multielectronic mixed-valence trimeric clusters
,”
Mol. Phys.
81
,
621
654
(
1994
).
58.
J. M.
Clemente-Juan
,
A.
Palii
,
B.
Tsukerblat
, and
E.
Coronado
, “
VIBPACK: A package to treat multidimensional electron-vibrational molecular problems with application to magnetic and optical properties
,”
J. Comput. Chem.
39
,
1815
1827
(
2018
).
59.
A.
Palii
,
S.
Aldoshin
,
B.
Tsukerblat
,
J. M.
Clemente-Juan
, and
E.
Coronado
, “
Vibronic model for intercommunication of localized spins via itinerant electron
,”
J. Phys. Chem. C
123
,
5746
5760
(
2019
).
60.
A.
Palii
and
B.
Tsukerblat
, “
Pair-delocalization in trigonal mixed-valence clusters: New insight into the vibronic origin of broken-symmetry ground states
,”
Phys. Chem. Chem. Phys.
21
,
11122
11131
(
2019
).
61.
C.
Bosch-Serrano
,
J. M.
Clemente-Juan
,
E.
Coronado
,
A.
Gaita-Ariño
,
A.
Palii
, and
B.
Tsukerblat
, “
Electric field control of the spin state in mixed-valence magnetic molecules
,”
Chem. Phys. Chem.
13
,
2662
2665
(
2012
).
62.
C.
Bosch-Serrano
,
J. M.
Clemente-Juan
,
E.
Coronado
,
A.
Gaita-Ariño
,
A.
Palii
, and
B.
Tsukerblat
, “
Molecular analog of multiferroics: Electric and magnetic field effects in many-electron mixed-valence dimers
,”
Phys. Rev. B
86
,
024432
(
2012
).
63.
A.
Palii
,
B.
Tsukerblat
,
J. M.
Clemente-Juan
, and
E.
Coronado
, “
Coherent manipulation of polarization in mixed-valence compounds by electric pulse via Landau–Zener transitions
,”
J. Phys. Chem. C
116
,
4999
5008
(
2012
).
64.
A.
Palii
,
J. M.
Clemente-Juan
,
B.
Tsukerblat
, and
E.
Coronado
, “
Electric field control of the optical properties in magnetic mixed valence molecules
,”
Chem. Sci.
5
,
3598
3602
(
2014
).
65.
H.
Qi
,
A.
Gupta
,
B. C.
Noll
,
G. L.
Snider
,
Y.
Lu
,
C.
Lent
, and
T. P.
Fehlner
, “
Dependence of field switched ordered arrays of dinuclear mixed-valence complexes on the distance between the redox centers and the size of the counterions
,”
J. Am. Chem. Soc.
127
,
15218
15227
(
2005
).
66.
S.
Zilberg
,
Y.
Stekolshik
,
A.
Palii
, and
B.
Tsukerblat
, “
Controllable electron transfer in mixed-valence bridged norbornylogous compounds: Ab initio calculation combined with a parametric model and through-bond and through-space interpretation
,”
J. Phys. Chem. A
126
(
19
),
2855
2878
(
2022
).
You do not currently have access to this content.