Determining the atomic structure of clusters has been a long-term challenge in theoretical calculations due to the high computational cost of density-functional theory (DFT). Deep learning potential (DP), as an alternative way, has been demonstrated to be able to conduct cluster simulations with close-to DFT accuracy but at a much lower computational cost. In this work, we update 34 structures of the 41 Cu clusters with atomic numbers ranging from 10 to 50 by combining global optimization and the DP model. The calculations show that the configuration of small Cun clusters (n = 10–15) tends to be oblate and it gradually transforms into a cage-like configuration as the size increases (n > 15). Based on the updated structures, their relative stability and electronic properties are extensively studied. In addition, we select three different clusters (Cu13, Cu38, and Cu49) to study their electrocatalytic ability of CO2 reduction. The simulation indicates that the main product is CO for these three clusters, while the selectivity of hydrocarbons is inhibited. This work is expected to clarify the ground-state structures and fundamental properties of Cun clusters, and to guide experiments for the design of Cu-based catalysts.

1.
J. A.
Alonso
, “
Electronic and atomic structure, and magnetism of transition-metal clusters
,”
Chem. Rev.
100
,
637
678
(
2000
).
2.
R.
Ferrando
,
J.
Jellinek
, and
R. L.
Johnston
, “
Nanoalloys: From theory to applications of alloy clusters and nanoparticles
,”
Chem. Rev.
108
,
845
910
(
2008
).
3.
J.
Zhao
,
X.
Huang
,
P.
Jin
, and
Z.
Chen
, “
Magnetic properties of atomic clusters and endohedral metallofullerenes
,”
Coord. Chem. Rev.
289
,
315
340
(
2015
).
4.
P.
Jena
and
A. W.
Castleman
, Jr
, “
Mass spectrometry and its role in advancing cluster science
,”
Int. J. Mass Spectrom.
377
,
235
247
(
2015
).
5.
Z.
Luo
,
A. W.
Castleman
, Jr
, and
S. N.
Khanna
, “
Reactivity of metal clusters
,”
Chem. Rev.
116
,
14456
14492
(
2016
).
6.
J.
Zhao
,
Q.
Du
,
S.
Zhou
, and
V.
Kumar
, “
Endohedrally doped cage clusters
,”
Chem. Rev.
120
,
9021
9163
(
2020
).
7.
B. H.
Cogollo-Olivo
,
N.
Seriani
, and
J. A.
Montoya
, “
Unbiased structural search of small copper clusters within DFT
,”
Chem. Phys.
461
,
20
24
(
2015
).
8.
N. A.
Dhas
,
C. P.
Raj
, and
A.
Gedanken
, “
Synthesis, characterization, and properties of metallic copper nanoparticles
,”
Chem. Mater.
10
,
1446
1452
(
1998
).
9.
Y.
Lu
and
W.
Chen
, “
Sub-nanometre sized metal clusters: From synthetic challenges to the unique property discoveries
,”
Chem. Soc. Rev.
41
,
3594
3623
(
2012
).
10.
R.
Reske
,
H.
Mistry
,
F.
Behafarid
,
B.
Roldan Cuenya
, and
P.
Strasser
, “
Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles
,”
J. Am. Chem. Soc.
136
,
6978
6986
(
2014
).
11.
S.
Nitopi
,
E.
Bertheussen
,
S. B.
Scott
,
X.
Liu
,
A. K.
Engstfeld
,
S.
Horch
,
B.
Seger
,
I. E. L.
Stephens
,
K.
Chan
, and
C.
Hahn
, “
Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte
,”
Chem. Rev.
119
,
7610
7672
(
2019
).
12.
N.
Durante
,
A.
Fortunelli
,
M.
Broyer
, and
M.
Stener
, “
Optical properties of Au nanoclusters from TD-DFT calculations
,”
J. Phys. Chem. C
115
,
6277
6282
(
2011
).
13.
K.
Baishya
,
J. C.
Idrobo
,
S.
Öğüt
,
M.
Yang
,
K. A.
Jackson
, and
J.
Jellinek
, “
First-principles absorption spectra of Cun (n = 2–20) clusters
,”
Phys. Rev. B
83
,
245402
(
2011
).
14.
F. H.
Stillinger
and
T. A.
Weber
, “
Hidden structure in liquids
,”
Phys. Rev. A
25
,
978
(
1982
).
15.
D. J.
Wales
and
J. P.
Doye
, “
Stationary points and dynamics in high-dimensional systems
,”
J. Chem. Phys.
119
,
12409
12416
(
2003
).
16.
B.
Assadollahzadeh
,
P. R.
Bunker
, and
P.
Schwerdtfeger
, “
The low lying isomers of the copper nonamer cluster, Cu9
,”
Chem. Phys. Lett.
451
,
262
269
(
2008
).
17.
C.-G.
Li
,
J.
Zhang
,
Y.-Q.
Yuan
,
Y.-N.
Tang
,
B.-Z.
Ren
, and
W.-G.
Chen
, “
Geometries, stabilities and electronic properties of copper and selenium doped copper clusters: Density functional theory study
,”
Physica E
86
,
303
310
(
2017
).
18.
P.
Calaminici
,
M.
Pérez-Romero
,
J. M.
Vásquez-Pérez
, and
A. M.
Köster
, “
On the ground state structure of neutral Cun (n = 12, 14, 16, 18, 20) clusters
,”
Comput. Theor. Chem.
1021
,
41
48
(
2013
).
19.
C. G.
Li
,
Z. G.
Shen
,
Y. F.
Hu
,
Y. N.
Tang
,
W. G.
Chen
, and
B. Z.
Ren
, “
Insights into the structures and electronic properties of Cun+1μ and CunSμ (n = 1–12; μ = 0, ±1) clusters
,”
Sci. Rep.
7
,
1
11
(
2017
).
20.
M.
Kabir
,
A.
Mookerjee
, and
A.
Bhattacharya
, “
Structure and stability of copper clusters: A tight-binding molecular dynamics study
,”
Phys. Rev. A
69
,
043203
(
2004
).
21.
M.
Yang
,
K. A.
Jackson
,
C.
Koehler
,
T.
Frauenheim
, and
J.
Jellinek
, “
Structure and shape variations in intermediate-size copper clusters
,”
J. Chem. Phys.
124
,
024308
(
2006
).
22.
Y.
Zhang
,
H.
Wang
,
W.
Chen
,
J.
Zeng
,
L.
Zhang
,
H.
Wang
, and
W.
E
, “
DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models
,”
Comput. Phys. Commun.
253
,
107206
(
2020
).
23.
S.
Bose
,
D.
Dhawan
,
S.
Nandi
,
R. R.
Sarkar
, and
D.
Ghosh
, “
Machine learning prediction of interaction energies in rigid water clusters
,”
Phys. Chem. Chem. Phys.
20
,
22987
22996
(
2018
).
24.
H.
Wang
,
Y.
Zhang
,
L.
Zhang
, and
H.
Wang
, “
Crystal structure prediction of binary alloys via deep potential
,”
Front. Chem.
8
,
895
(
2020
).
25.
A.
Seko
,
T.
Maekawa
,
K.
Tsuda
, and
I.
Tanaka
, “
Machine learning with systematic density-functional theory calculations: Application to melting temperatures of single-and binary-component solids
,”
Phys. Rev. B
89
,
054303
(
2014
).
26.
G.
Pilania
,
J. E.
Gubernatis
, and
T.
Lookman
, “
Structure classification and melting temperature prediction in octet AB solids via machine learning
,”
Phys. Rev. B
91
,
214302
(
2015
).
27.
C.
Helma
,
T.
Cramer
,
S.
Kramer
, and
L.
De Raedt
, “
Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds
,”
J. Chem. Inf. Comput. Sci.
44
,
1402
1411
(
2004
).
28.
L.
Zhang
,
D.-Y.
Lin
,
H.
Wang
,
R.
Car
, and
E.
Weinan
, “
Active learning of uniformly accurate interatomic potentials for materials simulation
,”
Phys. Rev. Mater.
3
,
023804
(
2019
).
29.
V. L.
Deringer
,
C. J.
Pickard
, and
G.
Csányi
, “
Data-driven learning of total and local energies in elemental boron
,”
Phys. Rev. Lett.
120
,
156001
(
2018
).
30.
J. P.
Doye
and
D. J.
Wales
, “
Global minima for transition metal clusters described by Sutton–Chen potentials
,”
New J. Chem.
22
,
733
744
(
1998
).
31.
P.
Tuo
,
X. B.
Ye
, and
B. C.
Pan
, “
A machine learning based deep potential for seeking the low-lying candidates of al clusters
,”
J. Chem. Phys.
152
,
114105
(
2020
).
32.
S.
Plimpton
, “
Fast parallel algorithms for short-range molecular dynamics
,”
J. Comput. Phys.
117
,
1
19
(
1995
).
33.
S.
Fredericks
,
K.
Parrish
,
D.
Sayre
, and
Q.
Zhu
, “
PyXtal: A python library for crystal structure generation and symmetry analysis
,”
Comput. Phys. Commun.
261
,
107810
(
2021
).
34.
G.
Kresse
and
J.
Furthmüller
, “
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
,”
Comput. Mater. Sci.
6
,
15
50
(
1996
).
35.
H.
Wang
,
L.
Zhang
,
J.
Han
, and
W.
E
, “
DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics
,”
Comput. Phys. Commun.
228
,
178
184
(
2018
).
36.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” in
Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015
,
San Diego, CA,
7–9 May 2015
.
37.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
Crystal structure prediction via particle-swarm optimization
,”
Phys. Rev. B
82
,
094116
(
2010
).
38.
Y.
Wang
,
J.
Lv
,
L.
Zhu
, and
Y.
Ma
, “
CALYPSO: A method for crystal structure prediction
,”
Comput. Phys. Commun.
183
,
2063
2070
(
2012
).
39.
X.
Ren
,
P.
Rinke
,
G. E.
Scuseria
, and
M.
Scheffler
, “
Renormalized second-order perturbation theory for the electron correlation energy: Concept, implementation, and benchmarks
,”
Phys. Rev. B
88
,
035120
(
2013
).
40.
Y.
Chen
,
X.
Xi
,
W.-L.
Yim
,
F.
Peng
,
Y.
Wang
,
H.
Wang
,
Y.
Ma
,
G.
Liu
,
C.
Sun
,
C.
Ma
,
Z.
Chen
, and
H.
Berger
, “
High-pressure phase transitions and structures of topological insulator BiTeI
,”
J. Phys. Chem. C
117
,
25677
25683
(
2013
).
41.
Q.
Li
,
D.
Zhou
,
W.
Zheng
,
Y.
Ma
, and
C.
Chen
, “
Global structural optimization of tungsten borides
,”
Phys. Rev. Lett.
110
,
136403
(
2013
).
42.
Y.
Wang
,
J.
Lv
,
L.
Zhu
,
S.
Lu
,
K.
Yin
,
Q.
Li
,
H.
Wang
,
L.
Zhang
, and
Y.
Ma
, “
Materials discovery via CALYPSO methodology
,”
J. Phys.: Condens. Matter
27
,
203203
(
2015
).
43.
H.-Z.
Chen
,
Y.-Y.
Zhang
,
X.
Gong
, and
H.
Xiang
, “
Predicting new TiO2 phases with low band gaps by a multiobjective global optimization approach
,”
J. Phys. Chem. C
118
,
2333
2337
(
2014
).
44.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
(
1993
).
45.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
(
1994
).
46.
G.
Kresse
and
D.
Joubert
, “
From ultrasoft pseudopotentials to the projector augmented-wave method
,”
Phys. Rev. B
59
,
1758
(
1999
).
47.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
(
1996
).
48.
P. B.
Balbuena
,
P. A.
Derosa
, and
J. M.
Seminario
, “
Density functional theory study of copper clusters
,”
J. Phys. Chem. B
103
,
2830
2840
(
1999
).
49.
O. A.
Sanders-Gutierrez
,
A.
Luna-Valenzuela
,
A.
Posada-Borbón
,
J.
Christian Schön
, and
A.
Posada-Amarillas
, “
Molecular dynamics and DFT study of 38-atom coinage metal clusters
,”
Comput. Mater. Sci.
201
,
110908
(
2022
).
50.
Q.
Li
,
Y.
Zhang
,
L.
Shi
,
M.
Wu
,
Y.
Ouyang
, and
J.
Wang
, “
Dynamic structure change of Cu nanoparticles on carbon supports for CO2 electro-reduction toward multicarbon products
,”
InfoMat
3
,
1285
1294
(
2021
).
51.
See Maptool https://github.com/haidi-ustc/maptool for more information about pre- and post- process input and output of first principles simulation software.
52.
C.
Zhang
,
H.
Duan
,
X.
Lv
,
B.
Cao
,
A.
Abliz
,
Z.
Wu
, and
M.
Long
, “
Static and dynamical isomerization of Cu38 cluster
,”
Sci. Rep.
9
,
1
9
(
2019
).
53.
H.-Y.
Mao
,
B.-X.
Li
,
W.-F.
Ding
,
Y.-H.
Zhu
,
X.-X.
Yang
,
C.-Y.
Li
, and
G.-X.
Ye
, “
Theoretical study on the aggregation of copper clusters on a liquid surface
,”
Materials
12
,
3877
(
2019
).
54.
X.-J.
Feng
and
Y.-H.
Luo
, “
Structure and stability of Al-doped boron clusters by the density-functional theory
,”
J. Phys. Chem. A
111
,
2420
2425
(
2007
).
55.
D.
Die
,
B. X.
Zheng
,
L. Q.
Zhao
,
Q. W.
Zhu
, and
Z. Q.
Zhao
, “
Insights into the structural, electronic and magnetic properties of V-doped copper clusters: Comparison with pure copper clusters
,”
Sci. Rep.
6
,
1
13
(
2016
).
56.
C.-G.
Li
,
Y.-Q.
Yuan
,
Y.-F.
Hu
,
J.
Zhang
,
Y.-N.
Tang
, and
B.-Z.
Ren
, “
Density functional theory study of the structures and electronic properties of copper and sulfur doped copper clusters
,”
Comput. Theor. Chem.
1080
,
47
55
(
2016
).
57.
R.
Singh
,
P.
Biswas
, and
P. K.
Jha
, “
Density functional theory investigation of structure, stability, and glycerol/hydrogen adsorption on Cu, Cu–Zn, and Cu–ZnO clusters
,”
Int. J. Quantum Chem.
120
,
e26239
(
2020
).
58.
V. A.
Spasov
,
T.-H.
Lee
, and
K. M.
Ervin
, “
Threshold collision-induced dissociation of anionic copper clusters and copper cluster monocarbonyls
,”
J. Chem. Phys.
112
,
1713
1720
(
2000
).
59.
S.
Darby
,
T. V.
Mortimer-Jones
,
R. L.
Johnston
, and
C.
Roberts
, “
Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm
,”
J. Chem. Phys.
116
,
1536
1550
(
2002
).
60.
W.
Lin
,
K. M.
Stocker
, and
G. C.
Schatz
, “
Mechanisms of hydrogen-assisted CO2 reduction on nickel
,”
J. Am. Chem. Soc.
139
,
4663
4666
(
2017
).
61.
Y. F.
Bu
,
M.
Zhao
,
G. X.
Zhang
,
X.
Zhang
,
W.
Gao
, and
Q.
Jiang
, “
Electroreduction of CO2 on cu clusters: The effects of size, symmetry, and temperature
,”
ChemElectroChem
6
,
1831
1837
(
2019
).
62.
Q.-Y.
Fan
,
J.-J.
Sun
,
F.
Wang
, and
J.
Cheng
, “
Adsorption-induced liquid-to-solid phase transition of cu clusters in catalytic dissociation of CO2
,”
J. Phys. Chem. Lett.
11
,
7954
7959
(
2020
).
63.
B.
Zijlstra
,
X.
Zhang
,
J.-X.
Liu
,
I. A.
Filot
,
Z. Y.
Zhou
,
S. G.
Sun
, and
E. J.
Hensen
, “
First-principles microkinetics simulations of electrochemical reduction of CO2 over Cu catalysts
,”
Electrochim. Acta
335
,
135665
(
2020
).
64.

See https://github.com/haidi-ustc/Cu-clusters for more information about Cu clusters obtained from deep learning based global optimization,

Supplementary Material

You do not currently have access to this content.