Electrocatalysis provides a potential solution to NO3 pollution in wastewater by converting it to innocuous N2 gas. However, materials with excellent catalytic activity are typically limited to expensive precious metals, hindering their commercial viability. In response to this challenge, we have conducted the most extensive computational search to date for electrocatalysts that can facilitate NO3 reduction reaction, starting with 59 390 candidate bimetallic alloys from the Materials Project and Automatic-Flow databases. Using a joint machine learning- and computation-based screening strategy, we evaluated our candidates based on corrosion resistance, catalytic activity, N2 selectivity, cost, and the ability to synthesize. We found that only 20 materials will satisfy all criteria in our screening strategy, all of which contain varying amounts of Cu. Our proposed list of candidates is consistent with previous materials investigated in the literature, with the exception of Cu–Co and Cu–Ag based compounds that merit further investigation.

1.
D.
Xu
,
Y.
Li
,
L.
Yin
,
Y.
Ji
,
J.
Niu
, and
Y.
Yu
, “
Electrochemical removal of nitrate in industrial wastewater
,”
Front. Environ. Sci. Eng.
12
,
9
(
2018
).
2.
R.
Carrey
,
E.
Ballesté
,
A. R.
Blanch
,
F.
Lucena
,
P.
Pons
,
J. M.
López
,
M.
Rull
,
J.
Solà
,
N.
Micola
,
J.
Fraile
 et al., “
Combining multi-isotopic and molecular source tracking methods to identify nitrate pollution sources in surface and groundwater
,”
Water Res.
188
,
116537
(
2021
).
3.
Q.
Yi
,
Y.
Zhang
,
K.
Xie
,
Q.
Chen
,
F.
Zheng
,
D.
Tonina
,
W.
Shi
, and
C.
Chen
, “
Tracking nitrogen pollution sources in plain watersheds by combining high-frequency water quality monitoring with tracing dual nitrate isotopes
,”
J. Hydrol.
581
,
124439
(
2020
).
4.
P. M.
Vitousek
,
J. D.
Aber
,
R. W.
Howarth
,
G. E.
Likens
,
P. A.
Matson
,
D. W.
Schindler
,
W. H.
Schlesinger
, and
D. G.
Tilman
, “
Human alteration of the global nitrogen cycle: Sources and consequences
,”
Ecol. Appl.
7
,
737
750
(
1997
).
5.
R.
Epsztein
,
O.
Nir
,
O.
Lahav
, and
M.
Green
, “
Selective nitrate removal from groundwater using a hybrid nanofiltration–reverse osmosis filtration scheme
,”
Chem. Eng. J.
279
,
372
378
(
2015
).
6.
L. N.
Pincus
,
H. E.
Rudel
,
P. V.
Petrović
,
S.
Gupta
,
P.
Westerhoff
,
C. L.
Muhich
, and
J. B.
Zimmerman
, “
Exploring the mechanisms of selectivity for environmentally significant oxo-anion removal during water treatment: A review of common competing oxo-anions and tools for quantifying selective adsorption
,”
Environ. Sci. Technol.
54
,
9769
9790
(
2020
).
7.
S.
Samatya
,
N.
Kabay
,
Ü.
Yüksel
,
M.
Arda
, and
M.
Yüksel
, “
Removal of nitrate from aqueous solution by nitrate selective ion exchange resins
,”
React. Funct. Polym.
66
,
1206
1214
(
2006
).
8.
G. K.
Luk
and
W. C.
Au-Yeung
, “
Experimental investigation on the chemical reduction of nitrate from groundwater
,”
Adv. Environ. Res.
6
,
441
453
(
2002
).
9.
S.
Guo
,
K.
Heck
,
S.
Kasiraju
,
H.
Qian
,
Z.
Zhao
,
L. C.
Grabow
,
J. T.
Miller
, and
M. S.
Wong
, “
Insights into nitrate reduction over indium-decorated palladium nanoparticle catalysts
,”
ACS Catal.
8
,
503
515
(
2018
).
10.
J.
Radjenovic
and
D. L.
Sedlak
, “
Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water
,”
Environ. Sci. Technol.
49
,
11292
11302
(
2015
).
11.
M. I. M.
Soares
, “
Biological denitrification of groundwater
,”
Water, Air, Soil Pollut.
123
,
183
193
(
2000
).
12.
P. M.
Ayyasamy
,
K.
Shanthi
,
P.
Lakshmanaperumalsamy
,
S.-J.
Lee
,
N.-C.
Choi
, and
D.-J.
Kim
, “
Two-stage removal of nitrate from groundwater using biological and chemical treatments
,”
J. Biosci. Bioeng.
104
,
129
134
(
2007
).
13.
F.
Rezvani
,
M.-H.
Sarrafzadeh
,
S.
Ebrahimi
, and
H.-M.
Oh
, “
Nitrate removal from drinking water with a focus on biological methods: A review
,”
Environ. Sci. Pollut. Res.
26
,
1124
1141
(
2019
).
14.
J. L.
Schnoor
,
Salt: The Final Frontier
(
ACS Publications
,
2013
).
15.
C. J.
Werth
,
C.
Yan
, and
J. P.
Troutman
, “
Factors impeding replacement of ion exchange with (electro)catalytic treatment for nitrate removal from drinking water
,”
ACS EST Eng.
1
,
6
20
(
2021
).
16.
W.
Duan
,
G.
Li
,
Z.
Lei
,
T.
Zhu
,
Y.
Xue
,
C.
Wei
, and
C.
Feng
, “
Highly active and durable carbon electrocatalyst for nitrate reduction reaction
,”
Water Res.
161
,
126
135
(
2019
).
17.
M.
Paidar
,
I.
Roušar
, and
K.
Bouzek
, “
Electrochemical removal of nitrate ions in waste solutions after regeneration of ion exchange columns
,”
J. Appl. Electrochem.
29
,
611
617
(
1999
).
18.
J.
Martínez
,
A.
Ortiz
, and
I.
Ortiz
, “
State-of-the-art and perspectives of the catalytic and electrocatalytic reduction of aqueous nitrates
,”
Appl. Catal., B
207
,
42
59
(
2017
).
19.
G. E.
Dima
,
A. C. A.
De Vooys
, and
M. T. M.
Koper
, “
Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions
,”
J. Electroanal. Chem.
554–555
,
15
23
(
2003
).
20.
Z.
Shen
,
D.
Liu
,
G.
Peng
,
Y.
Ma
,
J.
Li
,
J.
Shi
,
J.
Peng
, and
L.
Ding
, “
Electrocatalytic reduction of nitrate in water using Cu/Pd modified Ni foam cathode: High nitrate removal efficiency and N2-selectivity
,”
Sep. Purif. Technol.
241
,
116743
(
2020
).
21.
Metalary—Latest and Historical Metal Prices, www.metalary.com,
2016
.
22.
A. K.
Singh
,
J. H.
Montoya
,
J. M.
Gregoire
, and
K. A.
Persson
, “
Robust and synthesizable photocatalysts for CO2 reduction: A data-driven materials discovery
,”
Nat. Commun.
10
,
443
(
2019
).
23.
K.
Abdelfatah
,
W.
Yang
,
R.
Vijay Solomon
,
B.
Rajbanshi
,
A.
Chowdhury
,
M.
Zare
,
S. K.
Kundu
,
A.
Yonge
,
A.
Heyden
, and
G.
Terejanu
, “
Prediction of transition-state energies of hydrodeoxygenation reactions on transition-metal surfaces based on machine learning
,”
J. Phys. Chem. C
123
,
29804
29810
(
2019
).
24.
D.
Roy
,
S. C.
Mandal
, and
B.
Pathak
, “
Machine learning-driven high-throughput screening of alloy-based catalysts for selective CO2 hydrogenation to methanol
,”
ACS Appl. Mater. Interfaces
13
,
56151
(
2021
).
25.
A.
Malek
,
Q.
Wang
,
S.
Baumann
,
O.
Guillon
,
M.
Eikerling
, and
K.
Malek
, “
A data-driven framework for the accelerated discovery of CO2 reduction electrocatalysts
,”
Front. Energy Res.
9
,
609070
(
2021
).
26.
G. H.
Gu
,
J.
Noh
,
S.
Kim
,
S.
Back
,
Z.
Ulissi
, and
Y.
Jung
, “
Practical deep-learning representation for fast heterogeneous catalyst screening
,”
J. Phys. Chem. Lett.
11
,
3185
3191
(
2020
).
27.
J.
Schumann
,
A. J.
Medford
,
J. S.
Yoo
,
Z.-J.
Zhao
,
P.
Bothra
,
A.
Cao
,
F.
Studt
,
F.
Abild-Pedersen
, and
J. K.
Nørskov
, “
Selectivity of synthesis gas conversion to C2+ oxygenates on fcc(111) transition-metal surfaces
,”
ACS Catal.
8
,
3447
3453
(
2018
).
28.
T.
Wang
,
G.
Li
,
X.
Cui
, and
F.
Abild-Pedersen
, “
Identification of earth-abundant materials for selective dehydrogenation of light alkanes to olefins
,”
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2024666118
(
2021
).
29.
S.
Wang
,
N.
Omidvar
,
E.
Marx
, and
H.
Xin
, “
Coordination numbers for unraveling intrinsic size effects in gold-catalyzed CO oxidation
,”
Phys. Chem. Chem. Phys.
20
,
6055
6059
(
2018
).
30.
Y.
Song
and
L. C.
Grabow
, “
Activity trends for catalytic CO and NO Co-oxidation at low temperature diesel emission conditions
,”
Ind. Eng. Chem. Res.
57
,
12715
12725
(
2018
).
31.
K. S.
Exner
,
I.
Sohrabnejad-Eskan
, and
H.
Over
, “
A universal approach to determine the free energy diagram of an electrocatalytic reaction
,”
ACS Catal.
8
,
1864
1879
(
2018
).
32.
J.-X.
Liu
,
D.
Richards
,
N.
Singh
, and
B. R.
Goldsmith
, “
Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals
,”
ACS Catal.
9
,
7052
7064
(
2019
).
33.
Z.
Wang
,
S. D.
Young
,
B. R.
Goldsmith
, and
N.
Singh
, “
Increasing electrocatalytic nitrate reduction activity by controlling adsorption through PtRu alloying
,”
J. Catal.
395
,
143
154
(
2021
).
34.
L.
Chanussot
,
A.
Das
,
S.
Goyal
,
T.
Lavril
,
M.
Shuaibi
,
M.
Riviere
,
K.
Tran
,
J.
Heras-Domingo
,
C.
Ho
,
W.
Hu
,
A.
Palizhati
,
A.
Sriram
,
B.
Wood
,
J.
Yoon
,
D.
Parikh
,
C. L.
Zitnick
, and
Z.
Ulissi
, “
Open catalyst 2020 (OC20) dataset and community challenges
,”
ACS Catal.
11
,
6059
6072
(
2021
); arXiv:2010.09990.
35.
W. L.
Hamilton
,
R.
Ying
, and
J.
Leskovec
, “
Representation learning on graphs: Methods and applications
,” in
IEEE Data Engineering Bulletin
,
2017
.
36.
A.
Jain
,
S. P.
Ong
,
G.
Hautier
,
W.
Chen
,
W. D.
Richards
,
S.
Dacek
,
S.
Cholia
,
D.
Gunter
,
D.
Skinner
,
G.
Ceder
 et al., “
Commentary: The materials project: A materials genome approach to accelerating materials innovation
,”
APL Mater.
1
,
011002
(
2013
).
37.
S.
Curtarolo
,
W.
Setyawan
,
G. L. W.
Hart
,
M.
Jahnatek
,
R. V.
Chepulskii
,
R. H.
Taylor
,
S.
Wang
,
J.
Xue
,
K.
Yang
,
O.
Levy
et al., “
AFLOW: An automatic framework for high-throughput materials discovery
,”
Comput. Mater. Sci.
58
,
218
226
(
2012
).
38.
J. H.
Montoya
and
K. A.
Persson
, “
A high-throughput framework for determining adsorption energies on solid surfaces
,”
npj Comput. Mater.
3
,
14
(
2017
).
39.
G.
Kresse
and
J.
Furthmüller
, “
Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
,”
Phys. Rev. B
54
,
11169
11186
(
1996
).
40.
G.
Kresse
and
J.
Hafner
, “
Ab initio molecular dynamics for liquid metals
,”
Phys. Rev. B
47
,
558
561
(
1993
).
41.
P. E.
Blöchl
, “
Projector augmented-wave method
,”
Phys. Rev. B
50
,
17953
17979
(
1994
).
42.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
, “
Generalized gradient approximation made simple
,”
Phys. Rev. Lett.
77
,
3865
3868
(
1996
).
43.
M.
Methfessel
and
A. T.
Paxton
, “
High-precision sampling for Brillouin-zone integration in metals
,”
Phys. Rev. B
40
,
3616
3621
(
1989
).
44.
S. P.
Ong
,
W. D.
Richards
,
A.
Jain
,
G.
Hautier
,
M.
Kocher
,
S.
Cholia
,
D.
Gunter
,
V. L.
Chevrier
,
K. A.
Persson
, and
G.
Ceder
, “
Python materials Genomics (pymatgen): A robust, open-source python library for materials analysis
,”
Comput. Mater. Sci.
68
,
314
319
(
2013
).
45.
W.
Sun
and
G.
Ceder
, “
Efficient creation and convergence of surface slabs
,”
Surf. Sci.
617
,
53
59
(
2013
).
46.
X.
Chen
,
X.
Huo
,
J.
Liu
,
Y.
Wang
,
C. J.
Werth
, and
T. J.
Strathmann
, “
Exploring beyond palladium: Catalytic reduction of aqueous oxyanion pollutants with alternative platinum group metals and new mechanistic implications
,”
Chem. Eng. J.
313
,
745
752
(
2017
).
47.
G. G.
Valiyeva
,
I.
Bavasso
,
L.
Di Palma
,
S. R.
Hajiyeva
,
M. A.
Ramazanov
, and
F. V.
Hajiyeva
, “
Synthesis of Fe/Ni bimetallic nanoparticles and application to the catalytic removal of nitrates from water
,”
Nanomaterials
9
,
1130
(
2019
).
48.
M. A.
Hasnat
,
R.
Agui
,
S.
Hinokuma
,
T.
Yamaguchi
, and
M.
Machida
, “
Different reaction routes in electrocatalytic nitrate/nitrite reduction using an H+-conducting solid polymer electrolyte
,”
Catal. Commun.
10
,
1132
1135
(
2009
).
49.
S.
Hamid
,
S.
Bae
, and
W.
Lee
, “
Novel bimetallic catalyst supported by red mud for enhanced nitrate reduction
,”
Chem. Eng. J.
348
,
877
887
(
2018
).
50.
I.
Witońska
,
S.
Karski
, and
J.
Gołuchowska
, “
Kinetic studies on the hydrogenation of nitrate in water using Rh/Al2O3 and Rh–Cu/Al2O3 catalysts
,”
Kinet. Catal.
48
,
823
828
(
2007
).
51.
H.
Liu
,
Y.
Yu
,
W.
Yang
,
W.
Lei
,
M.
Gao
, and
S.
Guo
, “
High-density defects on PdAg nanowire networks as catalytic hot spots for efficient dehydrogenation of formic acid and reduction of nitrate
,”
Nanoscale
9
,
9305
9309
(
2017
).
52.
M. P.
Maia
,
M. A.
Rodrigues
, and
F. B.
Passos
, “
Nitrate catalytic reduction in water using niobia supported palladium–copper catalysts
,”
Catal. Today
123
,
171
176
(
2007
).
53.
J.
Park
,
J. K.
Choe
,
W.
Lee
, and
S.
Bae
, “
Highly fast and selective removal of nitrate in groundwater by bimetallic catalysts supported by fly ash-derived zeolite Na-X
,”
Environ. Sci.: Nano
7
,
3360
3371
(
2020
).
54.
W.
Siriwatcharapiboon
,
Y.
Kwon
,
J.
Yang
,
R. L.
Chantry
,
Z.
Li
,
S. L.
Horswell
, and
M. T. M.
Koper
, “
Promotion effects of Sn on the electrocatalytic reduction of nitrate at Rh nanoparticles
,”
ChemElectroChem
1
,
172
179
(
2014
).
55.
O. S. G. P.
Soares
,
J. J. M.
Órfão
, and
M. F. R.
Pereira
, “
Bimetallic catalysts supported on activated carbon for the nitrate reduction in water: Optimization of catalysts composition
,”
Appl. Catal., B
91
,
441
448
(
2009
).
56.
M. A.
Hasnat
,
M. R.
Karim
, and
M.
Machida
, “
Electrocatalytic ammonia synthesis: Role of cathode materials and reactor configuration
,”
Catal. Commun.
10
,
1975
1979
(
2009
).
57.
L.
Lemaignen
,
C.
Tong
,
V.
Begon
,
R.
Burch
, and
D.
Chadwick
, “
Catalytic denitrification of water with palladium-based catalysts supported on activated carbons
,”
Catal. Today
75
,
43
48
(
2002
).
58.
J.
Klicpera
,
S.
Giri
,
J. T.
Margraf
, and
S.
Günnemann
, “
Fast and uncertainty-aware directional message passing for non-equilibrium molecules
,” arXiv:2011.14115 (
2020
).
59.
J.
Klicpera
,
J.
Groß
, and
S.
Günnemann
, “
Directional message passing for molecular graphs
,” in
International Conference on Learning Representations (ICLR)
(
ICLR
,
2020
), pp.
1
13
.
60.
A. J. R.
Hensley
,
K.
Ghale
,
C.
Rieg
,
T.
Dang
,
E. S.
Anderst
,
F.
Studt
,
C. T.
Campbell
,
J.-S.
McEwen
, and
Y.
Xu
, “
A DFT-based method for more accurate adsorption energies: An adaptive sum of energies from RPBE and vdW density functionals
,”
J. Phys. Chem. C
121
,
4937
(
2017
).
61.
A.
Jain
,
Z.
Wang
, and
J. K.
Nørskov
, “
Stable two-dimensional materials for oxygen reduction and oxygen evolution reactions
,”
ACS Energy Lett.
4
,
1410
1411
(
2019
).
62.
A. K.
Singh
,
L.
Zhou
,
A.
Shinde
,
S. K.
Suram
,
J. H.
Montoya
,
D.
Winston
,
J. M.
Gregoire
, and
K. A.
Persson
, “
Electrochemical stability of metastable materials
,”
Chem. Mater.
29
,
10159
10167
(
2017
).
63.
Daily Metal Price: Free Metal Price Tables and Charts, https://www.dailymetalprice.com/,
2021
.
64.
APMEX: Precious Metals Dealer, https://www.apmex.com/,
2021
.
65.
M.
Aykol
,
S. S.
Dwaraknath
,
W.
Sun
, and
K. A.
Persson
, “
Thermodynamic limit for synthesis of metastable inorganic materials
,”
Sci. Adv.
4
,
eaaq0148
(
2018
).
66.
Y.
Wang
,
A.
Xu
,
Z.
Wang
,
L.
Huang
,
J.
Li
,
F.
Li
,
J.
Wicks
,
M.
Luo
,
D.-H.
Nam
,
C.-S.
Tan
,
Y.
Ding
,
J.
Wu
,
Y.
Lum
,
C.-T.
Dinh
,
D.
Sinton
,
G.
Zheng
, and
E. H.
Sargent
, “
Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption
,”
J. Am. Chem. Soc.
142
,
5702
5708
(
2020
).
67.
X.
Zhang
,
Y.
Wang
,
C.
Liu
,
Y.
Yu
,
S.
Lu
, and
B.
Zhang
, “
Recent advances in non-noble metal electrocatalysts for nitrate reduction
,”
Chem. Eng. J.
403
,
126269
(
2021
).
68.
N.
Comisso
,
S.
Cattarin
,
S.
Fiameni
,
R.
Gerbasi
,
L.
Mattarozzi
,
M.
Musiani
,
L.
Vázquez-Gómez
, and
E.
Verlato
, “
Electrodeposition of Cu-Rh alloys and their use as cathodes for nitrate reduction
,”
Electrochem. Commun.
25
,
91
93
(
2012
).
69.
Y.
Zhang
,
Y.
Zhao
,
Z.
Chen
,
L.
Wang
,
L.
Zhou
,
P.
Wu
,
F.
Wang
, and
P.
Ou
, “
Fe/Cu composite electrode prepared by electrodeposition and its excellent behavior in nitrate electrochemical removal
,”
J. Electrochem. Soci.
165
,
E420
E428
(
2018
).
70.
L.
Mattarozzi
,
S.
Cattarin
,
N.
Comisso
,
R.
Gerbasi
,
P.
Guerriero
,
M.
Musiani
,
L.
Vázquez-Gómez
, and
E.
Verlato
, “
Electrodeposition of compact and porous Cu-Zn alloy electrodes and their use in the cathodic reduction of nitrate
,”
J. Electrochem. Soc.
162
,
D236
D241
(
2015
).
71.
L.
Mattarozzi
,
S.
Cattarin
,
N.
Comisso
,
P.
Guerriero
,
M.
Musiani
,
L.
Vázquez-Gómez
, and
E.
Verlato
, “
Electrochemical reduction of nitrate and nitrite in alkaline media at CuNi alloy electrodes
,”
Electrochim. Acta
89
,
488
496
(
2013
).
72.
D.
Reyter
,
D.
Bélanger
, and
L.
Roué
, “
Optimization of the cathode material for nitrate removal by a paired electrolysis process
,”
J. Hazard. Mater.
192
,
507
513
(
2011
).
73.
B. K.
Simpson
and
D. C.
Johnson
, “
Electrocatalysis of nitrate reduction at copper-nickel alloy electrodes in acidic media
,”
Electroanalysis
16
,
532
538
(
2004
).
74.
Y.
Zeng
,
C.
Priest
,
G.
Wang
, and
G.
Wu
, “
Restoring the nitrogen cycle by electrochemical reduction of nitrate: Progress and prospects
,”
Small Methods
4
,
2000672
(
2020
).
75.
Z.
Wang
,
D.
Richards
, and
N.
Singh
, “
Recent discoveries in the reaction mechanism of heterogeneous electrocatalytic nitrate reduction
,”
Catal.: Sci. Technol.
11
,
705
725
(
2021
).
76.
J. M.
McEnaney
,
S. J.
Blair
,
A. C.
Nielander
,
J. A.
Schwalbe
,
D. M.
Koshy
,
M.
Cargnello
, and
T. F.
Jaramillo
, “
Electrolyte engineering for efficient electrochemical nitrate reduction to ammonia on a titanium electrode
,”
ACS Sustainable Chem. Eng.
8
,
2672
2681
(
2020
).
77.
M. T.
De Groot
and
M. T. M.
Koper
, “
The influence of nitrate concentration and acidity on the electrocatalytic reduction of nitrate on platinum
,”
J. Electroanal. Chem.
562
,
81
94
(
2004
).
78.
C.
Bing
, Bureau of Reclamation,
2009
.
79.
C.
Su
and
R. W.
Puls
, “
Nitrate reduction by zerovalent iron: Effects of formate, oxalate, citrate, chloride, sulfate, borate, and phosphate
,”
Environ. Sci. Technol.
38
,
2715
2720
(
2004
).
80.
M. A.
Hasnat
,
J. A.
Safwan
,
M. A.
Rashed
,
Z.
Rahman
,
M. M.
Rahman
,
Y.
Nagao
, and
A. M.
Asiri
, “
Inverse effects of supporting electrolytes on the electrocatalytic nitrate reduction activities in a Pt|Nafion|Pt-Cu-type reactor assembly
,”
RSC Adv.
6
,
11609
11617
(
2016
).
81.
A.
Kulkarni
,
S.
Siahrostami
,
A.
Patel
, and
J. K.
Nørskov
, “
Understanding catalytic activity trends in the oxygen reduction reaction
,”
Chem. Rev.
118
,
2302
2312
(
2018
).
82.
J. K.
Nørskov
,
F.
Studt
,
F.
Abild-Pederson
, and
T.
Bligaard
,
Fundamental Concepts in Heterogeneous Catalysis
(
John Wiley & Sons
,
Hoboken, NJ
,
2014
), p.
196
.
You do not currently have access to this content.