As early as 1975, Pitzer suggested that copernicium, flerovium, and oganesson are volatile substances behaving like noble gas because of their closed-shell configurations and accompanying relativistic effects. It is, however, precarious to predict the chemical bonding and physical behavior of a solid by knowledge of its atomic or molecular properties only. Copernicium and oganesson have been analyzed very recently by our group. Both are predicted to be semiconductors and volatile substances with rather low melting and boiling points, which may justify a comparison with the noble gas elements. Here, we study closed-shell flerovium in detail to predict its solid-state properties, including the melting point, by decomposing the total energy into many-body forces derived from relativistic coupled-cluster theory and from density functional theory. The convergence of such a decomposition for flerovium is critically analyzed, and the problem of using density functional theory is highlighted. We predict that flerovium in many ways does not behave like a typical noble gas element despite its closed-shell 7p1/22 configuration and resulting weak interactions. Unlike the case of noble gases, the many-body expansion in terms of the interaction energy does not converge smoothly. This makes the accurate prediction of phase transitions very difficult. Nevertheless, a first prediction by Monte Carlo simulation estimates the melting point at 284 ± 50 K. Furthermore, calculations for the electronic bandgap suggests that flerovium is a semiconductor similar to copernicium.

1.
G. N.
Lewis
,
J. Am. Chem. Soc.
38
,
762
(
1916
).
2.
G. N.
Lewis
,
Valence and the Structure of Atoms and Molecules
, American Chemical Society Monographs Series (
Chemical Catalog Company, Inc.
,
New York
,
1923
).
3.
G. N.
Lewis
,
J. Chem. Phys.
1
,
17
(
1933
).
4.
W.
Heitler
and
F.
London
,
Z. Phys.
44
,
455
(
1927
).
5.
L.
Pauling
,
The Nature of the Chemical Bond, and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry
(
Cornell University Press
,
Ithaca, NY
,
1960
).
6.
A.
Zewail
,
The Chemical Bond: Structure and Dynamics
(
Elsevier
,
1992
).
7.
G.
Frenking
and
S.
Shaik
,
The Chemical Bond: Fundamental Aspects of Chemical Bonding
(
John Wiley & Sons
,
2014
), Vol. 1.
8.
G.
Frenking
and
S.
Shaik
,
The Chemical Bond: Chemical Bonding Across the Periodic Table
(
John Wiley & Sons
,
2014
), Vol. 2.
9.
G.
Frenking
,
Isr. J. Chem.
62
,
e202100070
(
2022
).
10.
L.
Pauling
,
Proc. Natl. Acad. Sci. U. S. A.
14
,
359
(
1928
).
11.
L.
Pauling
,
J. Am. Chem. Soc.
53
,
1367
(
1931
).
12.
L.
Pauling
,
J. Am. Chem. Soc.
53
,
3225
(
1931
).
13.
L.
Pauling
,
J. Am. Chem. Soc.
54
,
988
(
1932
).
14.
L.
Pauling
,
J. Am. Chem. Soc.
54
,
3570
(
1932
).
15.
L.
Pauling
,
Proc. Natl. Acad. Sci. U. S. A.
18
,
293
(
1932
).
16.
L.
Pauling
and
G. W.
Wheland
,
J. Chem. Phys.
1
,
362
(
1933
).
17.
L.
Pauling
and
J.
Sherman
,
J. Chem. Phys.
1
,
606
(
1933
).
18.
L.
Pauling
and
J.
Sherman
,
J. Chem. Phys.
1
,
679
(
1933
).
19.
M.
Weisberg
,
P.
Needham
, and
R.
Hendry
, in
The Stanford Encyclopedia of Philosophy
, Spring 2019 ed., edited by
E. N.
Zalta
(
Metaphysics Research Lab, Stanford University
,
2019
).
20.
L.
Zhao
,
W. H. E.
Schwarz
, and
G.
Frenking
,
Nat. Rev. Chem.
3
,
35
(
2019
).
21.
L.
Zhao
,
S.
Pan
,
N.
Holzmann
,
P.
Schwerdtfeger
, and
G.
Frenking
,
Chem. Rev.
119
,
8781
(
2019
).
22.
C. A.
Coulson
,
J. Chem. Soc.
1955
,
2069
.
23.
K.
Ruedenberg
,
Rev. Mod. Phys.
34
,
326
(
1962
).
24.
F.
Driessler
and
W.
Kutzelnigg
,
Theor. Chim. Acta
43
,
1
(
1976
).
25.
S.
Shaik
,
D.
Danovich
,
W.
Wu
,
P.
Su
,
H. S.
Rzepa
, and
P. C.
Hiberty
,
Nat. Chem.
4
,
195
(
2012
).
26.
G.
Frenking
and
M.
Hermann
,
Chem. -Eur. J.
22
,
18975
(
2016
).
27.
S.
Shaik
,
D.
Danovich
,
B.
Braida
, and
P. C.
Hiberty
,
Chem. -Eur. J.
22
,
18977
(
2016
).
28.
R. F. W.
Bader
,
J. Phys. Chem. A
113
,
10391
(
2009
).
29.
P.
Politzer
and
J. S.
Murray
,
Struct. Chem.
30
,
1153
(
2019
).
30.
R.
Hoffmann
,
Angew. Chem., Int. Ed.
26
,
846
(
1987
).
31.
W. A.
Harrison
,
Electronic Structure and the Properties of Solids: The Physics of the Chemical Bond
(
Courier Corporation
,
2012
).
32.
T. A.
Albright
,
J. K.
Burdett
, and
M.-H.
Whangbo
,
Orbital Interactions in Chemistry
(
John Wiley & Sons
,
2013
).
33.
J. S.
Griffith
and
L. E.
Orgel
,
Q. Rev. Chem. Soc.
11
,
381
(
1957
).
34.
C.
Ballhausen
,
Int. J. Quantum Chem.
5
,
373
(
1971
).
35.
36.
P.
Schwerdtfeger
, “
Relativity and chemical bonding
,” in
The Chemical Bond
(
John Wiley & Sons
,
2014
), Chap. 11, pp.
383
404
.
37.
P.
Schwerdtfeger
,
Chem. Phys. Lett.
183
,
457
(
1991
).
38.
W. E.
Spicer
,
A. H.
Sommer
, and
J. G.
White
,
Phys. Rev.
115
,
57
(
1959
).
39.
N. E.
Christensen
and
J.
Kollar
,
Solid State Commun.
46
,
727
(
1983
).
40.
C.
Koenig
,
N. E.
Christensen
, and
J.
Kollar
,
Phys. Rev. B
29
,
6481
(
1984
).
41.
E.
Pahl
,
D.
Figgen
,
A.
Borschevsky
,
K. A.
Peterson
, and
P.
Schwerdtfeger
,
Theor. Chem. Acc.
129
,
651
(
2011
).
42.
N.
Gaston
and
P.
Schwerdtfeger
,
Phys. Rev. B
74
,
024105
(
2006
).
43.
B.
Paulus
and
K.
Rosciszewski
,
Chem. Phys. Lett.
394
,
96
(
2004
).
44.
B.
Paulus
,
K.
Rosciszewski
,
N.
Gaston
,
P.
Schwerdtfeger
, and
H.
Stoll
,
Phys. Rev. B
70
,
165106
(
2004
).
45.
Y.
Wang
,
H.-J.
Flad
, and
M.
Dolg
,
Phys. Rev. B
61
,
2362
(
2000
).
46.
F.
Calvo
,
E.
Pahl
,
M.
Wormit
, and
P.
Schwerdtfeger
,
Angew. Chem., Int. Ed.
52
,
7583
(
2013
).
47.
K. G.
Steenbergen
,
E.
Pahl
, and
P.
Schwerdtfeger
,
J. Phys. Chem. Lett.
8
,
1407
(
2017
).
48.
J. M.
Mewes
and
P.
Schwerdtfeger
,
Angew. Chem., Int. Ed.
60
,
7703
(
2021
).
49.
J.-M.
Mewes
and
O. R.
Smits
,
Phys. Chem. Chem. Phys.
22
,
24041
(
2020
).
50.
E.
Pahl
,
F.
Calvo
,
L.
Koči
, and
P.
Schwerdtfeger
,
Angew. Chem., Int. Ed.
47
,
8207
(
2008
).
51.
O. R.
Smits
,
P.
Jerabek
,
E.
Pahl
, and
P.
Schwerdtfeger
,
Angew. Chem., Int. Ed.
57
,
9961
(
2018
).
52.
O. R.
Smits
,
P.
Jerabek
,
E.
Pahl
, and
P.
Schwerdtfeger
,
Phys. Rev. B
101
,
104103
(
2020
).
53.
K.
Huber
and
G.
Herzberg
,
Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules.
(
Van Rostrand-Reinhold
,
New York
,
1979
).
54.
C.
Kittel
and
P.
McEuen
,
Introduction to Solid State Physics
(
John Wiley & Sons
,
2018
).
55.
P.
Schwerdtfeger
,
N.
Gaston
,
R. P.
Krawczyk
,
R.
Tonner
, and
G. E.
Moyano
,
Phys. Rev. B
73
,
064112
(
2006
).
56.
J. E.
Jones
and
A. E.
Ingham
,
Proc. R. Soc. London, Ser. A
107
,
636
(
1925
).
57.
A.
Burrows
,
S.
Cooper
,
E.
Pahl
, and
P.
Schwerdtfeger
,
J. Math. Phys.
61
,
123503
(
2020
).
58.
A.
Hermann
,
R. P.
Krawczyk
,
M.
Lein
,
P.
Schwerdtfeger
,
I. P.
Hamilton
, and
J. J. P.
Stewart
,
Phys. Rev. A
76
,
013202
(
2007
).
59.
K. S.
Pitzer
,
J. Chem. Soc., Chem. Commun.
1975
,
760b
.
60.
B.
Eichler
,
Kernenergie
19
,
307
(
1976
); available at https://inis.iaea.org/search/search.aspx?orig_q=RN:8295447.
61.
B.
Fricke
,
Recent Impact of Physics on Inorganic Chemistry
, Structure and Bonding (
Springer
,
Berlin, Heidelberg
,
1975
), Vol. 21, pp.
89
144
.
62.
B.
Fricke
and
G.
Soff
,
At. Data Nucl. Data Tables
19
,
83
(
1977
).
63.
A.
Landau
,
E.
Eliav
,
Y.
Ishikawa
, and
U.
Kaldor
,
J. Chem. Phys.
114
,
2977
(
2001
).
64.
T. H.
Dinh
,
V. A.
Dzuba
, and
V. V.
Flambaum
,
Phys. Rev. A
78
,
062502
(
2008
).
65.
E.
Eliav
,
U.
Kaldor
, and
A.
Borschevsky
,
Encyclopedia of Inorganic and Bioinorganic Chemistry
(
Wiley
,
2011
), p.
1
.
66.
B. G. C.
Lackenby
,
V. A.
Dzuba
, and
V. V.
Flambaum
,
Phys. Rev. A
98
,
042512
(
2018
).
67.
A.
Shee
,
S.
Knecht
, and
T.
Saue
,
Phys. Chem. Chem. Phys.
17
,
10978
(
2015
).
68.
P.
Schwerdtfeger
and
J. K.
Nagle
,
Mol. Phys.
117
,
1200
(
2019
).
69.
V.
Pershina
,
A.
Borschevsky
,
E.
Eliav
, and
U.
Kaldor
,
J. Chem. Phys.
128
,
024707
(
2008
).
70.
P.
Jerabek
,
B.
Schuetrumpf
,
P.
Schwerdtfeger
, and
W.
Nazarewicz
,
Phys. Rev. Lett.
120
,
053001
(
2018
).
71.
D.
Goebel
and
U.
Hohm
,
J. Phys. Chem.
100
,
7710
(
1996
).
72.
C.
Thierfelder
,
B.
Assadollahzadeh
,
P.
Schwerdtfeger
,
S.
Schäfer
, and
R.
Schäfer
,
Phys. Rev. A
78
,
052506
(
2008
).
73.
E. G.
Hope
,
Coord. Chem. Rev.
257
,
902
(
2013
), part of Special Issue: Recent Developments in Main Group Chemistry.
74.
G. L.
Pollack
,
Rev. Mod. Phys.
36
,
748
(
1964
).
75.
P.
Schwerdtfeger
,
R.
Tonner
,
G. E.
Moyano
, and
E.
Pahl
,
Angew. Chem., Int. Ed.
55
,
12200
(
2016
).
76.
K. G.
Steenbergen
,
J.-M.
Mewes
,
L. F.
Pašteka
,
H. W.
Gäggeler
,
G.
Kresse
,
E.
Pahl
, and
P.
Schwerdtfeger
,
Phys. Chem. Chem. Phys.
19
,
32286
(
2017
).
77.
J. M.
Mewes
,
O. R.
Smits
,
G.
Kresse
, and
P.
Schwerdtfeger
,
Angew. Chem., Int. Ed.
58
,
17964
(
2019
).
78.
P.
Jerabek
,
O. R.
Smits
,
J.-M.
Mewes
,
K. A.
Peterson
, and
P.
Schwerdtfeger
,
J. Phys. Chem. A
123
,
4201
(
2019
).
79.
O. R.
Smits
,
J. M.
Mewes
,
P.
Jerabek
, and
P.
Schwerdtfeger
,
Angew. Chem., Int. Ed.
59
,
23636
(
2020
).
80.
R.
Eichler
,
N. V.
Aksenov
,
Y. V.
Albin
,
A. V.
Belozerov
,
G. A.
Bozhikov
,
V. I.
Chepigin
,
S. N.
Dmitriev
,
R.
Dressler
,
H. W.
Gäggeler
,
V. A.
Gorshkov
,
G.
Henderson
 et al.,
Radiochim. Acta
98
,
133
(
2010
).
81.
A.
Yakushev
,
J. M.
Gates
,
A.
Türler
,
M.
Schädel
,
C. E.
Düllmann
,
D.
Ackermann
,
L.-L.
Andersson
,
M.
Block
,
W.
Brüchle
,
J.
Dvorak
,
K.
Eberhardt
,
H. G.
Essel
,
J.
Even
,
U.
Forsberg
,
A.
Gorshkov
,
R.
Graeger
,
K. E.
Gregorich
,
W.
Hartmann
,
R.-D.
Herzberg
,
F. P.
Heßberger
,
D.
Hild
,
A.
Hübner
,
E.
Jäger
,
J.
Khuyagbaatar
,
B.
Kindler
,
J. V.
Kratz
,
J.
Krier
,
N.
Kurz
,
B.
Lommel
,
L. J.
Niewisch
,
H.
Nitsche
,
J. P.
Omtvedt
,
E.
Parr
,
Z.
Qin
,
D.
Rudolph
,
J.
Runke
,
B.
Schausten
,
E.
Schimpf
,
A.
Semchenkov
,
J.
Steiner
,
P.
Thörle-Pospiech
,
J.
Uusitalo
,
M.
Wegrzecki
, and
N.
Wiehl
,
Inorg. Chem.
53
,
1624
(
2014
).
82.
P.
Steinegger
and
R.
Eichler
,
CHIMIA Int. J. Chem.
74
,
924
(
2020
).
83.
V.
Pershina
,
A.
Borschevsky
,
E.
Eliav
, and
U.
Kaldor
,
J. Chem. Phys.
129
,
144106
(
2008
).
84.
J.-D.
Chai
and
M.
Head-Gordon
,
J. Chem. Phys.
128
,
084106
(
2008
).
86.
L.
Trombach
,
S.
Ehlert
,
S.
Grimme
,
P.
Schwerdtfeger
, and
J.-M.
Mewes
,
Phys. Chem. Chem. Phys.
21
,
18048
(
2019
).
87.
A.
Türler
and
V.
Pershina
,
Chem. Rev.
113
,
1237
(
2013
).
89.
K. G.
Dyall
,
I. P.
Grant
,
C. T.
Johnson
,
F. A.
Parpia
, and
E. P.
Plummer
,
Comput. Phys. Commun.
55
,
425
(
1989
).
90.
DIRAC, a relativistic ab initio electronic structure program, release DIRAC21, written by
R.
Bast
,
A. S. P.
Gomes
,
T.
Saue
,
L.
Visscher
, and
H. J. Aa.
Jensen
, with contributions from
I. A.
Aucar
,
V.
Bakken
,
K. G.
Dyall
,
S.
Dubillard
,
U.
Ekström
,
E.
Eliav
,
T.
Enevoldsen
,
E.
Faßhauer
,
T.
Fleig
,
O.
Fossgaard
,
L.
Halbert
,
E. D.
Hedegård
,
T.
Helgaker
,
B.
Helmich–Paris
,
J.
Henriksson
,
M.
Iliaš
,
Ch. R.
Jacob
,
S.
Knecht
,
S.
Komorovský
,
O.
Kullie
,
J. K.
Lærdahl
,
C. V.
Larsen
,
Y. S.
Lee
,
N. H.
List
,
H. S.
Nataraj
,
M. K.
Nayak
,
P.
Norman
,
G.
Olejniczak
,
J.
Olsen
,
J. M. H.
Olsen
,
A.
Papadopoulos
,
Y. C.
Park
,
J. K.
Pedersen
,
M.
Pernpointner
,
J. V.
Pototschnig
,
R.
di Remigio
,
M.
Repisky
,
K.
Ruud
,
P.
Sałek
,
B.
Schimmelpfennig
,
B.
Senjean
,
A.
Shee
,
J.
Sikkema
,
A.
Sunaga
,
A. J.
Thorvaldsen
,
J.
Thyssen
,
J.
van Stralen
,
M. L.
Vidal
,
S.
Villaume
,
O.
Visser
,
T.
Winther
, and
S.
Yamamoto
, available at , see also http://www.diracprogram.org,
2021
.
91.
T.
Saue
,
R.
Bast
,
A. S. P.
Gomes
,
H. J. A.
Jensen
,
L.
Visscher
,
I. A.
Aucar
,
R.
Di Remigio
,
K. G.
Dyall
,
E.
Eliav
,
E.
Fasshauer
,
T.
Fleig
,
L.
Halbert
,
E. D.
Hedegård
,
B.
Helmich-Paris
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
J. K.
Laerdahl
,
M. L.
Vidal
,
M. K.
Nayak
,
M.
Olejniczak
,
J. M. H.
Olsen
,
M.
Pernpointner
,
B.
Senjean
,
A.
Shee
,
A.
Sunaga
, and
J. N. P.
van Stralen
,
J. Chem. Phys.
152
,
204104
(
2020
).
92.
J. C.
Slater
,
Quantum Theory of Molecular and Solids
(
McGraw-Hill
,
1974
), Vol. 4.
93.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
94.
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
95.
J. P.
Perdew
,
M.
Ernzerhof
, and
K.
Burke
,
J. Chem. Phys.
105
,
9982
(
1996
).
96.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
97.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
98.
K. G.
Dyall
,
Theor. Chem. Acc.
131
,
1172
(
2012
).
99.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
100.
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
101.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mat. Sci.
6
,
15
(
1996
).
102.
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
103.
P. E.
Blöchl
,
Phys. Rev. B
50
,
17953
(
1994
).
104.
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
105.
J. P.
Perdew
,
A.
Ruzsinszky
,
G. I.
Csonka
,
O. A.
Vydrov
,
G. E.
Scuseria
,
L. A.
Constantin
,
X.
Zhou
, and
K.
Burke
,
Phys. Rev. Lett.
100
,
136406
(
2008
).
106.
S.
Grimme
,
J.
Antony
,
S.
Ehrlich
, and
H.
Krieg
,
J. Chem. Phys.
132
,
154104
(
2010
).
107.
108.
F.
Aryasetiawan
and
O.
Gunnarsson
,
Rep. Prog. Phys.
61
,
237
(
1998
).
109.
M.
Shishkin
,
M.
Marsman
, and
G.
Kresse
,
Phys. Rev. Lett.
99
,
246403
(
2007
).
110.
A. D.
Becke
and
K. E.
Edgecombe
,
J. Chem. Phys.
92
,
5397
(
1990
).
111.
112.
A.
Savin
,
R.
Nesper
,
S.
Wengert
, and
T. F.
Fässler
,
Angew. Chem., Int. Ed. Engl.
36
,
1808
(
1997
).
113.
J.
Pilmé
,
E.
Renault
,
T.
Ayed
,
G.
Montavon
, and
N.
Galland
,
J. Chem. Theory Comput.
8
,
2985
(
2012
).
114.
K. G.
Dyall
,
Theor. Chem. Acc.
112
,
403
(
2004
).
115.
K. G.
Dyall
,
Theor. Chem. Acc.
115
,
441
(
2006
).
116.
K. G.
Dyall
,
Theor. Chem. Acc.
129
,
603
(
2011
).
117.
K. G.
Dyall
,
Theor. Chem. Acc.
131
,
1217
(
2012
).
118.
T.
Saue
and
T.
Helgaker
,
J. Comput. Chem.
23
,
814
(
2002
).
119.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
120.
J. F.
Ouyang
and
R. P. A.
Bettens
,
J. Chem. Theory Comput.
11
,
5132
(
2015
).
121.
F.
London
,
Trans. Faraday Soc.
33
,
8b
(
1937
).
122.
T.
Gould
and
T.
Bučko
,
J. Chem. Theory Comput.
12
,
3603
(
2016
).
123.
A.
Hermann
,
J.
Furthmüller
,
H. W.
Gäggeler
, and
P.
Schwerdtfeger
,
Phys. Rev. B
82
,
155116
(
2010
).
124.
D.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
125.
T. G.
Williams
,
N. J.
DeYonker
, and
A. K.
Wilson
,
J. Chem. Phys.
128
,
044101
(
2008
).
126.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
127.
B. M.
Axilrod
and
E.
Teller
,
J. Chem. Phys.
11
,
299
(
1943
).
128.
Y.
Muto
,
J. Proc. Phys. Math. Soc. Jpn.,
17
(
10
),
629
631
(
1943
); available at https://www.jstage.jst.go.jp/article/subutsukaishi1927/17/10-11-12/17_10-11-12_629/_article/-char/ja/..
129.
P.
Schwerdtfeger
and
A.
Hermann
,
Phys. Rev. B
80
,
064106
(
2009
).
130.
B. M.
Powell
and
G.
Dolling
,
Rare Gas Solids
(
Academic
,
New York
,
1976
), Vols. 1–2.
131.
F.
Jensen
,
Theor. Chem. Acc.
113
,
267
(
2005
).
132.
R.
Fletcher
and
M. J. D.
Powell
,
Comput. J.
6
,
163
(
1963
).
133.
L.
Koči
,
R.
Ahuja
, and
A. B.
Belonoshko
,
Phys. Rev. B
75
,
214108-1
214108-7
(
2007
).
134.
L.
Burakovsky
,
D. L.
Preston
, and
R. R.
Silbar
,
Phys. Rev. B
61
,
15011
(
2000
).
135.
O. L.
Keller
, Jr.
,
J. L.
Burnett
,
T. A.
Carlson
, and
C. W.
Nestor
, Jr.
,
J. Phys. Chem.
74
,
1127
(
1970
).
136.
K. S.
Pitzer
,
J. Chem. Phys.
63
,
1032
(
1975
).
137.
I. P.
Grant
and
N. C.
Pyper
,
Nature
265
,
715
(
1977
).
138.
P.
Pyykkö
and
J. P.
Desclaux
,
Nature
266
,
336
(
1977
).
139.
M.
Seth
,
K.
Faegri
, and
P.
Schwerdtfeger
,
Angew. Chem., Int. Ed.
37
,
2493
(
1998
).
140.
P.
Schwedtfeger
and
M.
Seth
,
J. Nucl. Radiochem. Sci.
3
,
133
(
2002
).
141.
C. S.
Nash
,
J. Phys. Chem. A
109
,
3493
(
2005
).
142.
Y. J.
Yu
,
C. Z.
Dong
,
J. G.
Li
, and
B.
Fricke
,
J. Chem. Phys.
128
,
124316
(
2008
).
143.
T.
Hangele
,
M.
Dolg
,
M.
Hanrath
,
X.
Cao
, and
P.
Schwerdtfeger
,
J. Chem. Phys.
136
,
214105
(
2012
).
144.
V. A.
Dzuba
and
V. V.
Flambaum
,
Hyperfine Interact.
237
,
160
(
2016
).
145.
M. Y.
Kaygorodov
,
D. P.
Usov
,
E.
Eliav
,
Y. S.
Kozhedub
,
A. V.
Malyshev
,
A. V.
Oleynichenko
,
V. M.
Shabaev
,
L. V.
Skripnikov
,
A. V.
Titov
,
I. I.
Tupitsyn
, and
A. V.
Zaitsevskii
,
Phys. Rev. A
105
,
062805
(
2022
).
146.
F. A.
Parpia
,
C. F.
Fischer
, and
I. P.
Grant
Comput. Phys. Commun.
94
,
249
71
(
1996
).
147.
C. E.
Moore
, “
Atomic energy levels
,” Technical Report, Natl. Bur. Stand. Ref. Data Ser., Nat. Bur. Stand., Circ. No. NSRDS-NBS 35,
U.S. GPO
,
Washington DC
,
1971
.
148.
W. H. E.
Schwarz
,
E. M.
van Wezenbeek
,
E. J.
Baerends
, and
J. G.
Snijders
,
J. Phys. B: At. Mol. Phys.
22
,
1515
(
1989
).
149.
E. J.
Baerends
,
W. H. E.
Schwarz
,
P.
Schwerdtfeger
, and
J. G.
Snijders
,
J. Phys. B: At. Mol. Phys.
23
,
3225
(
1990
).
150.
A.
Borschevsky
,
V.
Pershina
,
E.
Eliav
, and
U.
Kaldor
,
Chem. Phys. Lett.
480
,
49
(
2009
).
151.
M. Y.
Kaygorodov
,
L. V.
Skripnikov
,
I. I.
Tupitsyn
,
E.
Eliav
,
Y. S.
Kozhedub
,
A. V.
Malyshev
,
A. V.
Oleynichenko
,
V. M.
Shabaev
,
A. V.
Titov
, and
A. V.
Zaitsevskii
,
Phys. Rev. A
104
,
012819
(
2021
).
152.
A.
Borschevsky
,
V.
Pershina
,
E.
Eliav
, and
U.
Kaldor
,
J. Chem. Phys.
141
,
084301
(
2014
).
153.
W.
Liu
,
C.
van Wüllen
,
Y. K.
Han
,
Y. J.
Choi
, and
Y. S.
Lee
,
Adv. Quantum Chem.
39
,
325
(
2001
).
154.
K.
Faegri
, Jr.
,
Theor. Chem. Acc.
105
,
252
(
2001
).
155.
W. L.
Bade
,
J. Chem. Phys.
27
,
1280
(
1957
).
156.
A.
Tkatchenko
and
O. A.
von Lilienfeld
,
Phys. Rev. B
78
,
045116
(
2008
).
157.
A.
Burrows
,
S.
Cooper
, and
P.
Schwerdtfeger
, “
The lattice sum for a hexagonal close packed structure and its dependence on the c/a ratio of the hexagonal cell parameters
,” unpublished results (
2022
).
158.
U.
Häussermann
and
S. I.
Simak
,
Phys. Rev. B
64
,
245114
(
2001
).
159.
S.
Hofmann
,
S.
Heinz
,
R.
Mann
,
J.
Maurer
,
G.
Münzenberg
,
S.
Antalic
,
W.
Barth
,
H. G.
Burkhard
,
L.
Dahl
,
K.
Eberhardt
,
R.
Grzywacz
,
J. H.
Hamilton
,
R. A.
Henderson
,
J. M.
Kenneally
,
B.
Kindler
,
I.
Kojouharov
,
R.
Lang
,
B.
Lommel
,
K.
Miernik
,
D.
Miller
,
K. J.
Moody
,
K.
Morita
,
K.
Nishio
,
A. G.
Popeko
,
J. B.
Roberto
,
J.
Runke
,
K. P.
Rykaczewski
,
S.
Saro
,
C.
Scheidenberger
,
H. J.
Schött
,
D. A.
Shaughnessy
,
M. A.
Stoyer
,
P.
Thörle-Pospiech
,
K.
Tinschert
,
N.
Trautmann
,
J.
Uusitalo
, and
A. V.
Yeremin
,
Eur. Phys. J. A
52
,
180
(
2016
).
160.
R.
Eichler
, “
Superheavy element chemistry
,” in
Nuclear Physics: Present and Future
, edited by
W.
Greiner
(
Springer International Publishing
,
Cham
,
2015
), pp.
33
43
.
161.
N. M.
Chiera
,
N. V.
Aksenov
,
Y. V.
Albin
,
G. A.
Bozhikov
,
V. I.
Chepigin
,
S. N.
Dmitriev
,
R.
Dressler
,
R.
Eichler
,
V. Y.
Lebedev
,
A.
Madumarov
,
O. N.
Malyshev
,
D.
Piguet
,
Y. A.
Popov
,
A. V.
Sabelnikov
,
P.
Steinegger
,
A. I.
Svirikhin
,
A.
Türler
,
G. K.
Vostokin
,
A.
Vögele
, and
A. V.
Yeremin
,
J. Radioanal. Nucl. Chem.
311
,
99
(
2017
).
162.
R.
Eichler
,
Radiochim. Acta
107
,
865
(
2019
).
163.
D.
Wing
,
G.
Ohad
,
J. B.
Haber
,
M. R.
Filip
,
S. E.
Gant
,
J. B.
Neaton
, and
L.
Kronik
,
Proc. Natl. Acad. Sci. U. S. A.
118
,
e2104556118
(
2021
).
164.
R.
Ramirez
and
L. M.
Falicov
,
Phys. Rev. B
1
,
3464
(
1970
).
165.
E. A.
Mastny
and
J. J.
de Pablo
,
J. Chem. Phys.
127
,
104504
(
2007
).
166.
H.
Stoll
,
B.
Paulus
, and
P.
Fulde
,
J. Chem. Phys.
123
,
144108
(
2005
).
168.
H.
Stoll
,
J. Chem. Phys.
151
,
044104
(
2019
).
169.
J. M.
Mewes
,
P.
Jerabek
,
O. R.
Smits
, and
P.
Schwerdtfeger
,
Angew. Chem., Int. Ed.
58
,
14260
(
2019
).

Supplementary Material

You do not currently have access to this content.