The frequency-independent Coulomb–Breit operator gives rise to the most accurate treatment of two-electron interaction in the non-quantum-electrodynamics regime. The Breit interaction in the Coulomb gauge consists of magnetic and gauge contributions. The high computational cost of the gauge term limits the application of the Breit interaction in relativistic molecular calculations. In this work, we apply the Pauli component integral–density matrix contraction scheme for gauge interaction with a maximum spin- and component separation scheme. We also present two different computational algorithms for evaluating gauge integrals. One is the generalized Obara–Saika algorithm, where the Laplace transformation is used to transform the gauge operator into Gaussian functions and the Obara–Saika recursion is used for reducing the angular momentum. The other algorithm is the second derivative of Coulomb interaction evaluated with Rys-quadrature. This work improves the efficiency of performing Dirac–Hartree–Fock with the variational treatment of Breit interaction for molecular systems. We use this formalism to examine relativistic trends in the Periodic Table and analyze the relativistic two-electron interaction contributions in heavy-element complexes.

1.
K. G.
Dyall
and
K.
Fægri
, Jr.
,
Introduction to Relativistic Quantum Chemistry
(
Oxford University Press
,
2007
).
2.
M.
Reiher
and
A.
Wolf
,
Relativistic Quantum Chemistry
, 2nd ed. (
Wiley VCH
,
2015
).
3.
I. P.
Grant
,
Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation
(
Springer Science & Business Media
,
2007
), Vol. 40.
4.
I.
Lindgren
,
Relativistic Many-Body Theory: A New Field-Theoretical Approach
(
Springer
,
Switzerland
,
2016
).
5.
J. B.
Mann
and
W. R.
Johnson
, “
Breit interaction in multielectron atoms
,”
Phys. Rev. A
4
,
41
51
(
1971
).
6.
K.-N.
Huang
,
M.
Aoyagi
,
M. H.
Chen
,
B.
Crasemann
, and
H.
Mark
, “
Neutral-atom electron binding energies from relaxed-orbital relativistic Hartree-Fock-Slater calculations 2 ≤ Z ≤ 106
,”
At. Data Nucl. Data Tables
18
,
243
291
(
1976
).
7.
C. T.
Chantler
,
T. V. B.
Nguyen
,
J. A.
Lowe
, and
I. P.
Grant
, “
Convergence of the Breit interaction in self-consistent and configuration-interaction approaches
,”
Phys. Rev. A
90
,
062504
(
2014
).
8.
K.
Kozioł
,
C. A.
Giménez
, and
G. A.
Aucar
, “
Breit corrections to individual atomic and molecular orbital energies
,”
J. Chem. Phys.
148
,
044113
(
2018
).
9.
C.
Thierfelder
and
P.
Schwerdtfeger
, “
Quantum electrodynamic corrections for the valence shell in heavy many-electron atoms
,”
Phys. Rev. A
82
,
062503
(
2010
).
10.
P.
Pyykkö
, “
The physics behind chemistry and the Periodic Table
,”
Chem. Rev.
112
,
371
384
(
2012
).
11.
P.
Pyykkö
, “
Relativistic effects in chemistry: More common than you thought
,”
Annu. Rev. Phys. Chem.
63
,
45
64
(
2012
).
12.
W.
Liu
and
I.
Lindgren
, “
Going beyond ‘no-pair relativistic quantum chemistry
,’”
J. Chem. Phys.
139
,
014108
(
2013
).
13.
W.
Liu
, “
Advances in relativistic molecular quantum mechanics
,”
Phys. Rep.
537
,
59
89
(
2014
).
14.
W.
Liu
, “
Essentials of relativistic quantum chemistry
,”
J. Chem. Phys.
152
,
180901
(
2020
).
15.
I. P.
Grant
, “
Relativistic self-consistent fields
,”
Proc. R. Soc. London, Ser. A
262
,
555
576
(
1961
).
16.
E.
Lindroth
,
A.-M.
Martensson-Pendrill
,
A.
Ynnerman
, and
P.
Oster
, “
Self-consistent treatment of the Breit interaction, with application to the electric dipole moment in thallium
,”
J. Phys. B
22
,
2447
2464
(
1989
).
17.
A.
Mohanty
and
E.
Clementi
, “
Dirac-Fock self-consistent field method for closed-shell molecules with kinetic balance and finite nuclear size
,”
Int. J. Quantum Chem.
39
,
487
517
(
1991
).
18.
O.
Visser
,
L.
Visscher
,
P. J. C.
Aerts
, and
W. C.
Nieuwpoort
, “
Relativistic all-electron molecular Hartree-Fock-Dirac-(Breit) calculations on CH4, SiH4, GeH4, SnH4, PbH4
,”
Theor. Chem. Acc.
81
,
405
416
(
1992
).
19.
L.
Visscher
,
O.
Visser
,
P. J. C.
Aerts
,
H.
Merenga
, and
W. C.
Nieuwpoort
, “
Relativistic quantum chemistry: The MOLFDIR program package
,”
Comput. Phys. Commun.
81
,
120
144
(
1994
).
20.
L.
Visscher
, “
Approximate molecular relativistic Dirac-Coulomb calculations using a simple Coulombic correction
,”
Theor. Chem. Acc.
98
,
68
70
(
1997
).
21.
J.
Styszyński
,
X.
Cao
,
G. L.
Malli
, and
L.
Visscher
, “
Relativistic all-electron Dirac-Fock-Breit calculations on xenon fluorides (XeFn, n = 1, 2, 4, 6)
,”
J. Comput. Chem.
18
,
601
608
(
1997
).
22.
B. T.
Saue
,
K.
Faegri
,
T.
Helgaker
, and
O.
Gropen
, “
Principles of direct 4-component relativistic SCF: Application to caesium auride
,”
Mol. Phys.
91
,
937
950
(
1997
).
23.
T.
Saue
and
H. J. A.
Jensen
, “
Quaternion symmetry in relativistic molecular calculations: The Dirac–Hartree–Fock method
,”
J. Chem. Phys.
111
,
6211
6222
(
1999
).
24.
H. M.
Quiney
,
H.
Skaane
, and
I. P.
Grant
, “
Ab initio relativistic quantum chemistry: Four-components good, two-components bad!
,”
Adv. Quantum Chem.
32
,
1
49
(
1998
).
25.
I. P.
Grant
and
H. M.
Quiney
, “
Application of relativistic theories and quantum electrodynamics to chemical problems
,”
Int. J. Quantum Chem.
80
,
283
297
(
2000
).
26.
T.
Yanai
,
T.
Nakajima
,
Y.
Ishikawa
, and
K.
Hirao
, “
A new computational scheme for the Dirac–Hartree–Fock method employing an efficient integral algorithm
,”
J. Chem. Phys.
114
,
6526
6538
(
2001
).
27.
T.
Yanai
,
T.
Nakajima
,
Y.
Ishikawa
, and
K.
Hirao
, “
A highly efficient algorithm for electron repulsion integrals over relativistic four-component Gaussian-type spinors
,”
J. Chem. Phys.
116
,
10122
10128
(
2002
).
28.
M. S.
Kelley
and
T.
Shiozaki
, “
Large-scale Dirac–Fock–Breit method using density fitting and 2-spinor basis functions
,”
J. Chem. Phys.
138
,
204113
(
2013
).
29.
T.
Saue
,
R.
Bast
,
A. S. P.
Gomes
,
H. J. A.
Jensen
,
L.
Visscher
,
I. A.
Aucar
,
R.
Di Remigio
,
K. G.
Dyall
,
E.
Eliav
,
E.
Fasshauer
,
T.
Fleig
,
L.
Halbert
,
E. D.
Hedegård
,
B.
Helmich-Paris
,
M.
Iliaš
,
C. R.
Jacob
,
S.
Knecht
,
J. K.
Laerdahl
,
M. L.
Vidal
,
M. K.
Nayak
,
M.
Olejniczak
,
J. M. H.
Olsen
,
M.
Pernpointner
,
B.
Senjean
,
A.
Shee
,
A.
Sunaga
, and
J. N. P.
van Stralen
, “
The DIRAC code for relativistic molecular calculations
,”
J. Chem. Phys.
152
,
204104
(
2020
).
30.
S.
Sun
,
T. F.
Stetina
,
T.
Zhang
,
H.
Hu
,
E. F.
Valeev
,
Q.
Sun
, and
X.
Li
, “
Efficient four-component Dirac–Coulomb–Gaunt Hartree–Fock in the Pauli spinor representation
,”
J. Chem. Theory Comput.
17
,
3388
3402
(
2021
).
31.
J. P.
Desclaux
, “
Multiconfiguration relativistic DIRAC-FOCK program
,”
Comput. Phys. Commun.
9
,
31
45
(
1975
).
32.
I. P.
Grant
and
B. J.
McKenzie
, “
The transverse electron-electron interaction in atomic structure calculations
,”
J. Phys. B
13
,
2671
(
1980
).
33.
K. G.
Dyall
,
I. P.
Grant
,
C. T.
Johnson
,
F. A.
Parpia
, and
E. P.
Plummer
, “
GRASP: A general-purpose relativistic atomic structure program
,”
Comput. Phys. Commun.
55
,
425
456
(
1989
).
34.
H. M.
Quiney
,
I. P.
Grant
, and
S.
Wilson
, “
The Dirac equation in the algebraic approximation. V. Self-consistent field studies including the Breit interaction
,”
J. Phys. B
20
,
1413
1422
(
1987
).
35.
Y.
Ishikawa
, “
Dirac–Fock Gaussian basis calculations: Inclusion of the Breit interaction in the self-consistent field procedure
,”
Chem. Phys. Lett.
166
,
321
325
(
1990
).
36.
Y.
Ishikawa
,
H. M.
Quiney
, and
G. L.
Malli
, “
Dirac-Fock-Breit self-consistent-field method: Gaussian basis-set calculations on many-electron atoms
,”
Phys. Rev. A
43
,
3270
3278
(
1991
).
37.
F. A.
Parpia
,
A. K.
Mohanty
, and
E.
Clementi
, “
Relativistic calculations for atoms: Self-consistent treatment of Breit interaction and nuclear volume effect
,”
J. Phys. B
25
,
1
16
(
1992
).
38.
F.
Rosicky
, “
On interelectronic magnetic and retardation effects within relativistic Hartree-Fock theory
,”
Chem. Phys. Lett.
85
,
195
198
(
1982
).
39.
P.
Chandra
and
R. J.
Buenker
, “
Relativistic integrals over Breit–Pauli operators using general Cartesian Gaussian functions. II. Two-electron interactions
,”
J. Chem. Phys.
79
,
366
372
(
1983
).
40.
A. K.
Mohanty
, “
Dirac–Fock self-consistent field method for closed-shell molecules including Breit interaction
,”
Int. J. Quantum Chem.
42
,
627
662
(
1992
).
41.
H. M.
Quiney
,
H.
Skaane
, and
I. P.
Grant
, “
Relativistic calculation of electromagnetic interactions in molecules
,”
J. Phys. B
30
,
L829
L834
(
1997
).
42.
H. M.
Quiney
,
H.
Skaane
, and
I. P.
Grant
, “
Relativistic, quantum electrodynamic and many-body effects in the water molecule
,”
Chem. Phys. Lett.
290
,
473
480
(
1998
).
43.
T.
Shiozaki
, “
Communication: An efficient algorithm for evaluating the Breit and spin–spin coupling integrals
,”
J. Chem. Phys.
138
,
111101
(
2013
).
44.
L.
Visscher
, “
The Dirac equation in quantum chemistry: Strategies to overcome the current computational problems
,”
J. Comput. Chem.
23
,
759
766
(
2002
).
45.
M.
Repisky
,
S.
Komorovsky
,
M.
Kadek
,
L.
Konecny
,
U.
Ekström
,
E.
Malkin
,
M.
Kaupp
,
K.
Ruud
,
O. L.
Malkina
, and
V. G.
Malkin
, “
ReSpect: Relativistic spectroscopy DFT program package
,”
J. Chem. Phys.
152
,
184101
(
2020
).
46.
W.
Liu
and
D.
Peng
, “
Infinite-order quasirelativistic density functional method based on the exact matrix quasirelativistic theory
,”
J. Chem. Phys.
125
,
044102
(
2006
).
47.
D.
Peng
,
W.
Liu
,
Y.
Xiao
, and
L.
Cheng
, “
Making four- and two-component relativistic density functional methods fully equivalent based on the idea of ‘from atoms to molecule
,’”
J. Chem. Phys.
127
,
104106
(
2007
).
48.
K. G.
Dyall
, “
An exact separation of the spin-free and spin-dependent terms of the Dirac–Coulomb–Breit Hamiltonian
,”
J. Chem. Phys.
100
,
2118
2127
(
1994
).
49.
R. E.
Stanton
and
S.
Havriliak
, “
Kinetic balance: A partial solution to the problem of variational safety in Dirac calculations
,”
J. Chem. Phys.
81
,
1910
1918
(
1984
).
50.
Y.
Ishikawa
,
R. C.
Binning
, and
K. M.
Sando
, “
Dirac-Fock discrete-basis calculations on the beryllium atom
,”
Chem. Phys. Lett.
101
,
111
114
(
1983
).
51.
K. G.
Dyall
and
K.
Fægri
, “
Kinetic balance and variational bounds failure in the solution of the Dirac equation in a finite Gaussian basis set
,”
Chem. Phys. Lett.
174
,
25
32
(
1990
).
52.
W.
Liu
, “
Ideas of relativistic quantum chemistry
,”
Mol. Phys.
108
,
1679
1706
(
2010
).
53.
Q.
Sun
,
W.
Liu
, and
W.
Kutzelnigg
, “
Comparison of restricted, unrestricted, inverse, and dual kinetic balances for four-component relativistic calculations
,”
Theor. Chem. Acc.
129
,
423
436
(
2011
).
54.
A.
Petrone
,
D. B.
Williams-Young
,
S.
Sun
,
T. F.
Stetina
, and
X.
Li
, “
An efficient implementation of two-component relativistic density functional theory with torque-free auxiliary variables
,”
Eur. Phys. J. B
91
,
169
(
2018
).
55.
Q.
Sun
, “
Libcint: An efficient general integral library for Gaussian basis functions
,”
J. Comput. Chem.
36
,
1664
1671
(
2015
).
56.
D. B.
Williams-Young
,
A.
Petrone
,
S.
Sun
,
T. F.
Stetina
,
P.
Lestrange
,
C. E.
Hoyer
,
D. R.
Nascimento
,
L.
Koulias
,
A.
Wildman
,
J.
Kasper
,
J. J.
Goings
,
F.
Ding
,
A. E.
DePrince
 III
,
E. F.
Valeev
, and
X.
Li
, “
The Chronus quantum (ChronusQ) software package
,”
Wiley Interdiscip. Rev.: Comput. Mol. Sci.
10
,
e1436
(
2020
).
57.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
, “
Main group atoms and dimers studied with a new relativistic ANO basis set
,”
J. Phys. Chem. A
108
,
2851
2858
(
2004
).
58.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
, and
P.-O.
Widmark
, “
New relativistic ANO basis sets for transition metal atoms
,”
J. Phys. Chem. A
109
,
6575
6579
(
2005
).
59.
B. O.
Roos
,
R.
Lindh
,
P.-Å.
Malmqvist
,
V.
Veryazov
,
P.-O.
Widmark
, and
A. C.
Borin
, “
New relativistic atomic natural orbital basis sets for lanthanide atoms with applications to the Ce diatom and LuF3
,”
J. Phys. Chem. A
112
,
11431
11435
(
2008
).
60.
D.-C.
Sergentu
,
T. J.
Duignan
, and
J.
Autschbach
, “
Ab initio study of covalency in the ground versus core-excited states and X-ray absorption spectra of actinide complexes
,”
J. Phys. Chem. Lett.
9
,
5583
5591
(
2018
).
61.
L.
Visscher
,
P. J. C.
Aerts
,
O.
Visser
, and
W. C.
Nieuwpoort
, “
Kinetic balance in contracted basis sets for relativistic calculations
,”
Int. J. Quantum Chem.
40
,
131
(
1991
).
62.
T.
Zhang
,
X.
Liu
,
E. F.
Valeev
, and
X.
Li
, “
Toward the minimal floating operation count Cholesky decomposition of electron repulsion integrals
,”
J. Phys. Chem. A
125
,
4258
4265
(
2021
).
63.
S.
Obara
and
A.
Saika
, “
General recurrence formulas for molecular integrals over Cartesian Gaussian functions
,”
J. Chem. Phys.
89
,
1540
(
1988
).
You do not currently have access to this content.